Minnesota State High School Mathematics League
 2019-20 Meet 1, Individual Event A SOLUTIONS

NO CALCULATORS are allowed on this event.

1. Express $\frac{\frac{4}{3}+\frac{5}{4}}{\frac{3}{4}+\frac{4}{5}}$ as a quotient of two relatively prime integers.
$\frac{\frac{4}{3}+\frac{5}{4}}{\frac{3}{4}+\frac{4}{5}}=\frac{\frac{16+15}{12}}{\frac{15+16}{20}}=\frac{20}{12}=\frac{5}{3}$
2. Let b be a positive integer. For how many values of b is 21_{b} a two-digit number in base 10 ?
$10 \leq 2 b+1 \leq 99 \rightarrow 4.5 \leq b \leq 49$. and so b takes on values from 5 to 49 , inclusive. There are $49-5+1=45$ values.
3. Determine exactly the smallest positive rational number which when divided by $\frac{4}{11}$ or $\frac{3}{22}$ or $\frac{5}{33}$ always yields an integer?

The numerator must be the LCM of 4, 3. and 5 while the denominator must be the GCD of $11,22,33$. Thus the number is $\frac{60}{11} .\left(\frac{60}{11} \div \frac{4}{11}=15, \frac{60}{11} \div \frac{3}{22}=40\right.$, and $\frac{60}{11} \div \frac{5}{33}=36$.)
4. Determine the number of ordered triples of digits $(\underline{A}, \underline{B}, \underline{C})$, such that $\underline{\bar{A} \underline{B}} \div \bar{C} \underline{\bar{A}}=2$, that is, a decimal with a two digit repetend divided by a decimal with a two digit repetend equals 2 .

Note that $. \overline{M N}=\frac{10 M+N}{99}$. Therefore, $\frac{\frac{10 A+B}{99}}{\frac{10 C+A}{99}}=2 \rightarrow 10 A+B=20 C+2 A \rightarrow 8 A+B=20 C$.
If $C=1$ then $A=2$ and $B=4$. If $C=2, A=5$ and $B=0$ or $A=4$ and $B=8$. If $C=3, A=7$ and $B=4$. If $C=4, A=9$ and $B=8$. If $C>5$, then either $A \geq 10$ or $B \geq 10$. So there are 5 triples satisfying the problem.

