Minnesota State High School Mathematics League

2019-20 Meet 1, Individual Event B SOLUTIONS

1. In Figure 1, $A B C D E F G H$ is a cube. What is $m \angle E B D$? (Hint: The answer is not 90°.)

Draw $\overline{E D}$. Since each segment is the diagonal of a face of the cube, $\triangle E B D$ must be equilateral. Therefore, $m \angle E B D=60^{\circ}$.

Figure 1
2. In Figure 2, determine exactly the sum of the angles labelled 1 through 10.

$$
5\left(180^{\circ}\right)-3\left(180^{\circ}\right)=2\left(180^{\circ}\right)=360^{\circ}
$$

3. The interior angles of a convex polygon increase in the following linear progression: $100^{\circ}, 108^{\circ}, 116^{\circ}, \ldots$. Determine the number of sides of the polygon.

The exterior angles of this polygon must also form a linear progression: $80^{\circ}, 72^{\circ}, 64^{\circ}, \ldots$. Since the exterior angles of any convex polygon add up to 360°, continue adding to the progression until the total reaches $360^{\circ} .80^{\circ}+72^{\circ}+64^{\circ}+56^{\circ}+48^{\circ}+40^{\circ}=360^{\circ}$. Therefore this must be a 6 -sided polygon.
4. The sides of right triangle $A B C$ are $a, a+7 d$, and $a+9 d$ with a and d being integers. What is the smallest possible perimeter of $\triangle A B C$?

$$
a^{2}+(a+7 d)^{2}=(a+9 d)^{2} \rightarrow a^{2}+a^{2}+14 a d+49 d^{2}=a^{2}+18 a d+81 d^{2} \rightarrow a^{2}-4 a d-32 d^{2}=0 . \text { This }
$$ factors into $(a+4 d)(a-8 d)=0$. So $a=-4 d$ or $a=8 d$. The first solution is impossible but the second yields a triangle with sides $8 d, 15 d$, and $17 d$. If $d=1$, the perimeter would be 40 .

