Minnesota State High School Mathematics League
 2019-20 Meet 1, Individual Event D SOLUTIONS

1. Given $f(x)=3 x^{5}+5 x^{3}-2 x^{2}+82$, determine exactly $f\left(f^{-1}(f(1))\right)$.

$$
f^{-1}(f(x))=x \text {. So } f\left(f^{-1}(f(1))\right)=f(1)=3+5-2+82=88 .
$$

2. $f(x)=x^{2}+b x+12$. Determine for how many integer values of $b, f(x)$ has non-real zeros.

To have non-real zeros the determinant must be negative. So $b^{2}-4(1)(12)<0 \rightarrow b^{2}<48$. Since b is an integer, $-6 \leq b \leq 6$.
3. $f(x)=a x^{2}$ with $a>0$. An equilateral triangle with side length k is placed on the parabola so that one of its vertices is on the vertex of the parabola and the other two vertices are on $f(x)$. Write a formula for a, the leading coefficient of $f(x)$, in terms of k. (Be sure to simplify.)

The point $\left(\frac{k}{2}, \frac{k \sqrt{3}}{2}\right)$ will be a point on this parabola. Therefore, $\frac{k \sqrt{3}}{2}=a\left(\frac{k}{2}\right)^{2} \rightarrow$ $a=\frac{4}{k^{2}} \cdot \frac{k \sqrt{3}}{2}=\frac{2 \sqrt{3}}{k}$.
4. $\quad f(x)=-(x-r)(x-t)$ with $t>r$. A right triangle is placed on $f(x)$ such that two of its vertices are $(r, 0)$ and $(t, 0)$ and its right angle vertex is on $f(x)$. Write a formula for the area of this triangle in terms of r and t.

The third vertex must be $(n, f(n))$ for some value of n. Since the sides to the other two vertices are perpendicular at this point, $\frac{f(n)-0}{n-r}=-\frac{n-t}{f(n)-0} \rightarrow(f(n))^{2}=-(n-r)(n-t) \rightarrow f(n)=1$. Therefore, the altitude of the triangle is 1 and the area is $\frac{1}{2}(t-r)(1)$.

