Math Team Notes
 Topic 1B: Angles and Special Triangles

Subtopics

Topic 1B, Angles and Special Triangles, includes the following subtopics.

1B Geometry: Angles and Special Triangles

1B1 Pythagorean Theorem, common Pythagorean triples
1B2 Complementary, supplementary, and vertical angles
1B3 Interior and exterior angles for triangles and polygons
1B4 Angles formed by transversals cutting parallel lines
1B5 Properties of isosceles and equilateral triangles
1B6 Relationships in $30^{\circ}-60^{\circ}-90^{\circ}$ - and $45^{\circ}-45^{\circ}-90^{\circ}$ - triangles

Notes

- Pythagorean Theorem For a right triangle with legs a and b and hypotenuse $c, a^{2}+b^{2}=c^{2}$.
- Converse of the Pythagorean Theorem If three real numbers satisfy $a^{2}+b^{2}=c^{2}$, then a right triangle may be formed with legs a and b and hypotenuse c.
- Definition A Pythagorean triple is a set of three positive integers that satisfies $a^{2}+b^{2}=c^{2}$. It is typically written as an ordered triple, such as $(3,4,5)$. Other common Pythagorean triples are $(5,12,13),(7,24,25),(8,15,17)$ and $(9,40,41)$. Recognize these and look for them.
- A multiple of a Pythagorean triple is also a Pythagorean triple. For example, multiplying each number of the Pythagorean triple $(3,4,5)$ by 2 yields the Pythagorean triple $(6,8,10)$.
- There are an infinite number of Pythagorean triples. One way to create your own is to choose m and n to be positive integers such that $m>n$. Then $\left(m^{2}-n^{2}, 2 m n, m^{2}+n^{2}\right)$ is a Pythagorean triple. (Note that because of the variable nature of m and n, the triple may not be ordered.)
- Definition Two angles A and B are complementary if their sum is 90°.
- Definition Two angles A and B are supplementary if their sum is 180°.
- Definition Two angles A and B are vertical angles if they form a pair of "opposite" angles formed by two intersecting lines or segments. Vertical angles are congruent (and have equal measure).
- Definitions Points are collinear if there is a line that contains all of them. Points are noncollinear if no single line contains them all. Lines are concurrent if they contain the same point.
- Definition An interior angle of a polygon is an angle on the inside of the polygon. The interior angles of a triangle sum to 180°. For a polygon with n sides (commonly called an \boldsymbol{n}-gon), the interior angles sum to $(n-2) 180^{\circ}$. For example, 180° for a triangle $(n=3), 360^{\circ}$ for a rectangle $(n=4)$ and 540° for a pentagon ($n=5$).
- Definition An exterior angle of a polygon is the angle formed between the extension of one side of the polygon and adjoining side. The exterior angles of a triangle sum to 360°, assuming we only allow one exterior angle per vertex in the "same direction." In fact, the exterior angles of any n-gon sum to 360°.
- Definition A regular polygon is a polygon in the sides are all the same length and are symmetrically placed around a common center.
- Definition A transversal is a line that intersects two or more lines at different points.
- The angles formed by a transversal and the two (or more) parallel lines it intersects have simple relationships. The names of the angle pairs (e.g., complementary angles, same-side interior angles) are less important than their numerical relationships. Know the numerical relationships.

Math Team Notes

Topic 1B: Angles and Special Triangles

- Definitions An angle is acute iff it is less than 90°, right iff it is 90°, obtuse iff it is greater than 90° but less than 180°, straight if it is 180°.
- Definition A triangle is scalene if it has no equal sides, isosceles if it has at least two equal sides, and equilateral if all its sides are equal.
- Definitions A triangle is obtuse iff it has an obtuse angle, right if it has a right angle, acute if all its angles are acute, and equiangular iff all its angles are equal.
- Theorems If two sides of a triangle are equal, the angles opposite them are equal. Conversely, if two angles of a triangle are equal, the sides opposite them are equal. An equilateral triangle is equiangular. An equiangular triangle is equilateral.
- Theorem In an isosceles right triangle (with angles of $45^{\circ}-45^{\circ}-90^{\circ}$), the hypotenuse is $\sqrt{2}$ times the length of the leg.
- Theorem In a $30^{\circ}-60^{\circ}-90^{\circ}$ right triangle, the hypotenuse is twice the shorter leg and the longer leg is $\sqrt{3}$ times the shorter leg.
- Definitions To solve a triangle is to determine all its (unknown) side lengths and angle measures. The set of all (known) side lengths and angle measures is the solution of the triangle.

Problems

For the following problems, assume a calculator is not allowed unless stated.

Problem \#1 ("quickie"; 1 point)

Goal: Know this topic so well that you can solve a Minnesota State High School Mathematics League (MSHSML) problem \#1 in less than one minute.

1. In Figure 1, $A B C D E F G H$ is a cube. What is $m \angle E B D$? (Hint: The answer is not 90°.) [calculator allowed] (MSHSML 2019-20 1B \#1)

Figure 1
2. Determine exactly the length of the hypotenuse in a right triangle whose legs have lengths of 360 and 480. [calculator allowed] (MSHSML 2018-19 18 \#1)
3. Right triangle $\triangle A B C$ has legs of lengths $3 \sqrt{2}$ and $4 \sqrt{2}$. Determine exactly the length of the hypotenuse. (MSHSML 2017-18 1B \#1)
4. A rectangular box has faces whose side lengths are $\sqrt{2}, 3$, and 5 . Find the longest diagonal of the box. [calculator allowed] (MSHSML 2016-17 1B \#1)
5. In Figure 1, if $\triangle A B C$ is equilateral, and $\overline{C D}$ is parallel to $\overline{A B}$, calculate the measure of $\angle B C D$. [calculator allowed] (MSHSML 2015-16 1B \#1)

Math Team Notes

Topic 1B: Angles and Special Triangles

6. In $\triangle A B C, m \angle A=45^{\circ}$ and $m \angle B=30^{\circ}$ as shown in Figure 1. If $B C=12$, determine exactly the length $A C$. [calculator allowed] (MSHSML 2014-15 1B \#1)

Figure 1
7. If $\frac{1}{3}$ and $\frac{1}{4}$ are the lengths of the two legs of a right triangle, determine exactly the length of the triangle's hypotenuse. [calculator allowed] (MSHSML 2013-14 1B \#1)
8. Figure 1 shows a star-like object formed by overlaying two isosceles triangles: $\triangle A B C$ with apex angle $A=40^{\circ}$ and $\triangle D E F$ with apex angle $D=50^{\circ}$. Calculate $m \angle A+m \angle B+m \angle C+$ $m \angle D+m \angle E+m \angle F$. [calculator allowed] (MSHSML 2012-13 1B \#1)

Problem \#2 ("textbook"; 2 points)

Goal: Know this topic so well that you can solve an MSHSML problem \#2 ("textbook") in less than two minutes.

1. In Figure 2, determine exactly the sum of the angles labeled 1 through 10. [calculator allowed] (MSHSML 2019-20 1B \#2)

2. Three non-concurrent lines are drawn in a plane. Lines l_{1} and l_{2} intersect in an acute angle of 50° and lines l_{2} and l_{3} at an acute angle of 20°. Determine exactly all possible values (in degrees) for the measure of the acute angle at which l_{1} and l_{3} meet. [calculator allowed] (MSHSML 2018-19 1B \#2)
3. Equilateral $\triangle A B C$ has side length of 5 . Point D is in the interior of $\triangle A B C$ such that $\triangle D C B$ is an isosceles right triangle. Determine exactly $A D$. (MSHSML 2017-18 1B \#2)
4. $\triangle A B C$ is an isosceles triangle whose hypotenuse $\overline{A C}$ has a length of $9 \sqrt{6}$. If point D lies on $\overline{B C}$ such that $m \angle B A D=30^{\circ}$, determine exactly $A D$. [calculator allowed] (MSHSML 2016-17 1B \#2)
5. Town A is located exactly 120 miles north of town B. If Sue hops in a car and drives directly east from town B at 50 mph , calculate how many hours (as a decimal) it will take for Sue to be exactly 241 miles from town A as the crow flies. [calculator allowed] (MSHSML 2015-16 1B \#2)

Math Team Notes

Topic 1B: Angles and Special Triangles

6. In Figure 2, lines l_{1} and l_{2} are parallel, while lines l_{3} and l_{4} intersect at an angle of 17°. If the acute angle formed by l_{1} and l_{4} measures 44°, calculate the measure of the obtuse angle between l_{1} and l_{3}. [calculator allowed] (MSHSML 2014-15 1B \#2)

7. In Figure $2, \overleftrightarrow{A B} \| \overleftrightarrow{C D}, \overleftrightarrow{P Q}$ is a transversal, $m \angle B P Q=2 x$, and $m \angle D Q P=5 x-51$. Determine exactly the measure of angle $A D Q$. [calculator allowed] (MSHSML 2013-14 1B \#2)

Figure 2
8. Beginning with regular pentagon $A_{1} A_{2} A_{3} A_{4} A_{5}$, we form fivepointed star $S_{1} S_{2} S_{3} S_{4} S_{5}$ by extending the edges of the pentagon, as shown in Figure 2. Calculate $m \angle S_{1}+m \angle S_{2}+$ $m \angle S_{3}+m \angle S_{4}+m \angle S_{5}$, where $S_{1}, S_{2}, S_{3}, S_{4}, S_{5}$ are the acute angles at each vertex. [calculator allowed] (MSHSML 2012-13 1B \#2)

Problem \#3 ("textbook with a twist"; 2 points)

Goal: Know this topic so well that you can solve an MSHSML problem \#3 in less than three minutes.

1. The interior angles of a convex polygon increase in the following linear progression: $100^{\circ}, 108^{\circ}$, $116^{\circ}, \ldots$. Determine the number of sides of the polygon. [calculator allowed] (MSHSML 2019-20 1B \#3)
2. Determine exactly both real numbers x such that $\sqrt{x+2}, \sqrt{3 x-2}$, and $\sqrt{6 x-5}$ are the side lengths of a right triangle. Express answers as quotients of relatively prime integers. [calculator allowed] (MSHSML 2018-19 1B \#3)

Math Team Notes

Topic 1B: Angles and Special Triangles

3. In Figure 3, $\triangle A B C$ is an isosceles right triangle with hypotenuse $\overline{A C}$. $\overline{B D} \perp \overline{A F}, \overline{D E} \perp \overline{B C}$, and $m \angle A B D=60^{\circ}$. If $A F=5 \sqrt{6}$, determine exactly the length of $\overline{C E}$. (MSHSML 2017-18 18 \#3)

Figure 3
4. Given $m \angle 1+m \angle 2+m \angle 3+m \angle 4=y$, as shown in Figure 3. Find the smallest possible angle y (in degrees) if x is an obtuse angle with an integer measure. [calculator allowed] (MSHSML 2016-17 1B \#3)

If you are able to solve MSHSML problem \#s 1, 2, and 3, in less than 1,2 , and 3 minutes, respectively, you will have at least 6 minutes (assuming a 12 -minute, 4 -question exam) to solve problem \#4 ("challenge problem"; 2 points). Problem \#4 tends to be more varied in nature than problems \#1-3 and may require a broader knowledge in other mathematical areas (algebra, for example). For past MSHSML Meet 1 Event B \#4 problems, see previous exams.

