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Subtopics 
Topic 1D, Roots of Quadratic and Polynomial Equations, includes the following subtopics. 
 

1D Algebra 2 & Analysis: Roots of Quadratic and Polynomial Equations 
1D1 Solution of quadratic equations by factoring, by completing the square, by formula 
1D2 Complex roots of quadratic equations; the discriminant and the character of the roots 
1D3 Relations between roots and coefficients 
1D4 Synthetic division 
1D5 Function notation 

 
Notes 

• Definition Given a quadratic of the form 𝑥2 + 𝑏𝑥, add to it the square of half the coefficient of 

𝑥, (
𝑏

2
)
2

, to create a perfect square trinomial: 𝑥2 + 𝑏𝑥 + (
𝑏

2
)
2
= (𝑥 +

𝑏

2
)
2

. This process is called 

completing the square. 

• Theorem (Quadratic Formula) The solutions of the quadratic equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 (with 

𝑎 ≠ 0), are given by 𝑥 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
. Do not forget the presence of 𝑎 in the denominator. 

• Know how to factor a (factorable) quadratic expression 𝑎𝑥2 + 𝑏𝑥 + 𝑐 for which 𝑎 ≠ 1. Know 

how to determine that an unfactorable quadratic expressions is, in fact, unfactorable. 

• Definition The discriminant is the expression 𝑏2 − 4𝑎𝑐 (inside the radical) in the quadratic 

formula. 

• Theorem For 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 and the related function 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, 

o When 𝑏2 − 4𝑎𝑐 > 0, the equation has 2 real roots, and the graph of the function has 2 

𝑥-intercepts 

o When 𝑏2 − 4𝑎𝑐 = 0, the equation has 1 real root with multiplicity 2, and the graph of 

the function has 1 𝑥-intercept (it “kisses” the 𝑥-axis) 

o When 𝑏2 − 4𝑎𝑐 < 0, the equation has 0 real roots and 2 complex roots, and the 

function has 0 𝑥-intercepts 

• Definitions Polynomial roots (usually just roots) are the solutions of a polynomial equation. 

These roots are the zeros of the related polynomial function, which are the 𝑥-intercepts of the 

graph of the function. For example, the roots of the equation 𝑥2 − 3𝑥 + 1 = −1 are the zeros 

of the related polynomial function 𝑓(𝑥) = 𝑥2 − 3𝑥 + 2. (The function is obtained by collecting 

all nonzero terms on one side of the equation.) The zeros are found by solving 𝑓(𝑥) = 0, 

resulting in 𝑥 = 1 and 𝑥 = 2. Hence, the roots of the polynomial equation 𝑥2 − 3𝑥 + 1 = −1 

are 𝑥 = 1,2; the zeros of 𝑓(𝑥) = 𝑥2 − 3𝑥 + 2 are 𝑥 = 1,2; and the 𝑥-intercepts of the graph of  

𝑓(𝑥) are 𝑥 = 1,2, or, alternately, (1,0) and (2,0). 

• Know how to use a graphing calculator to determine the approximate 𝑥-intercepts of a graph. 

• Definition To divide polynomial 𝑃(𝑥) = 𝑎𝑥𝑛 + 𝑏𝑥𝑛−1 +⋯ by 𝑥 − 𝑘, perform synthetic division 

as follows: 

o Write 𝑘 (not −𝑘) and the coefficients of 𝑃(𝑥) on the first line. Separate the 𝑘 from the 

coefficients in some way. Remember to insert any missing zeros. 

o Leave a blank second line. Bring down 𝑎 to the third line; this is the first coefficient of 

the quotient. 
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o Multiply this quotient coefficient by 𝑘 and write the result, ka, beneath the next 𝑃(𝑥) 

coefficient, b. Add 𝑏 to 𝑘𝑎. The result, 𝑏 + 𝑘𝑎, written in the third line, is the second 

quotient coefficient. 

o Continue the pattern. Multiply each new quotient coefficient by 𝑘 and add the result to 

the next coefficient of 𝑃(𝑥). The result of the last addition is the remainder 𝑟. 

• Remainder Theorem If a polynomial 𝑃(𝑥) is divided by 𝑥 − 𝑘, the remainder is 𝑟 = 𝑃(𝑘). 

• Definition By the Remainder Theorem, you can divide 𝑃(𝑥) by 𝑥 − 𝑘 to find 𝑃(𝑘). If synthetic 

division is used to divide, the process is called synthetic substitution. Example: Use synthetic 

substitution to find 𝑃(5) for 𝑃(𝑥) = −2𝑥4 + 6𝑥3 + 15𝑥 − 1. The correct answer is 𝑃(𝑥) =

−426. 

• Factor Theorem For polynomial 𝑃(𝑥), (𝑥 − 𝑎) is a factor of 𝑃(𝑥) if and only if 𝑃(𝑥) = 0. 

• If a polynomial equation 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎0 = 0 has rational roots, use the Rational 

Root Theorem to find these roots. To do so, follow these steps: 

o Find all the factors of 𝑎𝑛 and 𝑎0. 

o Let 𝑞 be one of the factors of 𝑎𝑛 and 𝑝 be one of the factors of 𝑎0. List all possible 

rational numbers 
𝑝

𝑞
. 

o Test if (𝑥 −
𝑝

𝑞
) is a factor of the polynomial using synthetic division. If a polynomial has a 

rational root, then it will be one of the 
𝑝

𝑞
 terms. 

• Vieta’s Theorem (for quadratic equations) For the quadratic equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 with 

roots 𝑟1 and 𝑟2, the following are true: 𝑟1+𝑟2 = −
𝑏

𝑎
 and  𝑟1 ∙ 𝑟2 =

𝑐

𝑎
. 

• Vieta’s Theorem (for sum of roots) For a general polynomial of degree 𝑛, 𝑃(𝑥) = 𝑎𝑛𝑥
𝑛 +

𝑎𝑛−1𝑥
𝑛−1 +⋯+ 𝑎1𝑥 + 𝑎0, the sum of the 𝑛 roots is 𝑟1+𝑟2 +⋯+ 𝑟𝑛 = −

𝑎𝑛−1

𝑎𝑛
. For example, for 

the polynomial 7𝑥3 − 6𝑥2 + 5𝑥 − 4, the sum of the 𝑛 = 3 roots is 𝑟1+𝑟2 + 𝑟3 = −
𝑎3−1

𝑎3
=

−
𝑎2

𝑎3
−

(−6)

7
=

6

7
. 

• Vieta’s Theorem (for product of roots) For a general polynomial of degree 𝑛, 𝑃(𝑥) = 𝑎𝑛𝑥
𝑛 +

𝑎𝑛−1𝑥
𝑛−1 +⋯+ 𝑎1𝑥 + 𝑎0, the product of the 𝑛 roots is 𝑟1𝑟2⋯𝑟𝑛 = (−1)𝑛

𝑎0

𝑎𝑛
 

• Vieta’s Theorem (for sum of products of pairs) For a general polynomial of degree 𝑛, 𝑃(𝑥) =

𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎1𝑥 + 𝑎0, the sum of the products of all paired roots is 

(𝑟1𝑟2 + 𝑟1𝑟3 +⋯+ 𝑟1𝑟𝑛) + (𝑟2𝑟3 + 𝑟2𝑟4 +⋯+ 𝑟2𝑟𝑛) + ⋯+ 𝑟𝑛−1𝑟𝑛 =
𝑎𝑛−2

𝑎𝑛
 

• Notation The inverse of a function 𝑓(𝑥) is written as 𝑓−1(𝑥). Generally1, the inverse function is 

an “undo” of the function, so 𝑓(𝑓−1(𝑥)) = 𝑓−1(𝑓(𝑥)) = 𝑥. 

 

Problems 

For the following problems, assume a calculator is not allowed unless stated. Note that, even when a 

calculator is allowed, it may not be necessary or even helpful (a calculator may have been allowed on the 

exam in order to solve a different problem). 

 

 
1 The caveat recognizes that the result assumes the function is a bijection, whereby the domain of the inverse is 
the same as the range of the function and the range of the inverse is the same as the domain of the function. 
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Problem #1 (“quickie”; 1 point) 

Goal: Know this topic so well that you can solve a Minnesota State High School Mathematics League 

(MSHSML) problem #1 in less than one minute. 

1. Given 𝑓(𝑥) = 3𝑥5 + 5𝑥3 − 2𝑥2 + 82, determine exactly 𝑓 (𝑓−1(𝑓(1))). [calculator allowed] (MSHSML 

2019-20 1D #1) 
2. Determine exactly all real solutions to the equation 𝑥2 + 8𝑥 = 8. (MSHSML 2018-19 1D #1) 

3. Determine exactly the remainder when 𝑥3 − 6𝑥2 + 4𝑥 − 5 is divided by 𝑥 − 3. (MSHSML 2017-18 1D 

#1) 
4. Determine exactly the product of the zeros of the equation (2𝑥 − 7)2 = 36. (MSHSML 2016-17 1D #1) 

5. Let 𝑓(𝑥) = 𝑥 + 3 and 𝑔(𝑥) = 𝑥2. Determine exactly the value(s) of 𝑥 for which 𝑔(𝑓(𝑥)) = 0. 
(MSHSML 2015-16 1D #1) 

6. Determine exactly the sum of the roots of the cubic polynomial 2𝑥3 − 9𝑥2 + 14𝑥 − 6. (MSHSML 

2014-15 1D #1) 
7. Let 𝑟1 and 𝑟2 be the distinct roots of 𝑟2 − 𝑟 − 20, with 𝑟1 < 𝑟2. Determine 𝑟2 exactly. (MSHSML 

2013-14 1D #1) 
8. Express (𝑥 + 1)(𝑥 + 10) + (𝑥 + 4)(𝑥 − 4) as the product of two binomials, each with integer 

coefficients. [calculator allowed] (MSHSML 2012-13 1D #1) 

9. Write, in 𝑥2 + 𝑏𝑥 + 𝑐 = 0 form, the quadratic equation whose roots are 𝑥 = −3 and 𝑥 = 1. 
[calculator allowed] (MSHSML 2011-12 1D #1) 

10. Determine exactly the least value of 𝑥 that satisfies the equation (𝑥 − 4)(𝑥 + 4) = 9. [calculator 

allowed] (MSHSML 2010-11 1D #1) 
 

Problem #2 (“textbook”; 2 points) 

Goal: Know this topic so well that you can solve an MSHSML problem #2 in less than two minutes. 

1. 𝑓(𝑥) = 𝑥2 + 𝑏𝑥 + 12. Determine for how many integer values of 𝑏, 𝑓(𝑥) has non-real zeros. 
[calculator allowed] (MSHSML 2019-20 1D #2) 

2. The solutions to 2𝑥2 + 𝑏𝑥 + 𝑐 = 0 are 𝑏 and 𝑐, where neither is zero. Determine exactly the 

ordered pair (𝑏, 𝑐). (MSHSML 2018-19 1D #2) 

3. For what values of 𝑚 does the product of the roots of 4(𝑥 − 2𝑚)2 equal 11? (MSHSML 2017-18 1D #2) 

4. For what value of 𝑎 does the polynomial 3𝑥2 + 𝑎𝑥 + 10 have 2 as a root? (MSHSML 2016-17 1D #2) 

5. Find the remainder when 2𝑥3 − 9𝑥2 + 14𝑥 − 6 is divided by 𝑥 + 2. (MSHSML 2015-16 1D #2) 

6. Determine exactly the value of 𝑘 for which the two solutions of 3𝑥2 − 4𝑥 + 𝑘 = 0 are equal. 
(MSHSML 2014-15 1D #2) 

7. Let 𝑥1 and 𝑥2 be the solutions of 𝑥2 − 20𝑥 + 13 = 0. Determine 
1

𝑥1
+

1

𝑥2
 exactly. (MSHSML 2013-14 

1D #2) 
8. What is the greatest integer 𝑐 for which the quadratic polynomial 5𝑥2 + 11𝑥 + 𝑐 has two 

distinct rational roots? [calculator allowed] (MSHSML 2012-13 1D #2) 

9. Find the remainder when 𝑥13 + 1 is divided by 𝑥 − 1. [calculator allowed] (MSHSML 2011-12 1D #2) 

10. Determine exactly the coordinates (both of them) of the highest point of the graph of 𝑦 + 𝑥2 +

6𝑥 = 4. [calculator allowed] (MSHSML 2010-11 1D #2) 

 

Problem #3 (“textbook with a twist”; 2 points) 

Goal: Know this topic so well that you can solve an MSHSML problem #3 in less than three minutes. 

1. 𝑓(𝑥) = 𝑎𝑥2 with 𝑎 > 0. An equilateral triangle with side length 𝑘 is placed on the parabola so 

that one of its vertices is on the vertex of the parabola and the other two vertices are on 𝑓(𝑥). 
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Write a formula for 𝑎, the leading coefficient of 𝑓(𝑥), in terms of k. (Be sure to simplify). [calculator 

allowed] (MSHSML 2019-20 1D #3) 

2. The function 𝑓(𝑥) = 𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 52 has 
13

2−3𝑖
 as one of its zeros. Determine exactly the 

ordered pair (𝑏, 𝑐). (MSHSML 2018-19 1D #3) 

3. For what values of p will the quadratic function 𝑓(𝑥) = 𝑥2 − 4𝑝𝑥 − 9 have a minimum value of 

−333? (MSHSML 2017-18 1D #3) 

4. Determine exactly all values of k for which the polynomials 𝑥2 + 2𝑥 − 5𝑘 and 𝑥2 − 10𝑥 − 𝑘 

share a common zero. (MSHSML 2016-17 1D #3) 

 

If you are able to solve MSHSML problem #s 1, 2, and 3, in less than 1, 2, and 3 minutes, respectively, you 

will have at least 6 minutes (assuming a 12-minute, 4-question exam) to solve problem #4 (“challenge 

problem”; 2 points). Problem #4 tends to be more varied in nature than problems #1-3 and may require 

a broader knowledge in other mathematical areas (geometry, for example). For past MSHSML Meet 1 

Event D #4 problems, see previous exams. 

 


