Math Team Notes

 Topic 1D: Roots of Quadratic and Polynomial Equations

 Topic 1D: Roots of Quadratic and Polynomial Equations}

Subtopics

Topic 1D, Roots of Quadratic and Polynomial Equations, includes the following subtopics.

1D Algebra 2 \& Analysis: Roots of Quadratic and Polynomial Equations

1D1 Solution of quadratic equations by factoring, by completing the square, by formula
1D2 Complex roots of quadratic equations; the discriminant and the character of the roots
1D3 Relations between roots and coefficients
1D4 Synthetic division
1D5 Function notation

Notes

- Definition Given a quadratic of the form $x^{2}+b x$, add to it the square of half the coefficient of $x,\left(\frac{b}{2}\right)^{2}$, to create a perfect square trinomial: $x^{2}+b x+\left(\frac{b}{2}\right)^{2}=\left(x+\frac{b}{2}\right)^{2}$. This process is called completing the square.
- Theorem (Quadratic Formula) The solutions of the quadratic equation $a x^{2}+b x+c=0$ (with $a \neq 0$), are given by $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$. Do not forget the presence of a in the denominator.
- Know how to factor a (factorable) quadratic expression $a x^{2}+b x+c$ for which $a \neq 1$. Know how to determine that an unfactorable quadratic expressions is, in fact, unfactorable.
- Definition The discriminant is the expression $b^{2}-4 a c$ (inside the radical) in the quadratic formula.
- Theorem For $a x^{2}+b x+c=0$ and the related function $y=a x^{2}+b x+c$,
- When $b^{2}-4 a c>0$, the equation has 2 real roots, and the graph of the function has 2 x-intercepts
- When $b^{2}-4 a c=0$, the equation has 1 real root with multiplicity 2 , and the graph of the function has $1 x$-intercept (it "kisses" the x-axis)
- When $b^{2}-4 a c<0$, the equation has 0 real roots and 2 complex roots, and the function has $0 x$-intercepts
- Definitions Polynomial roots (usually just roots) are the solutions of a polynomial equation. These roots are the zeros of the related polynomial function, which are the x-intercepts of the graph of the function. For example, the roots of the equation $x^{2}-3 x+1=-1$ are the zeros of the related polynomial function $f(x)=x^{2}-3 x+2$. (The function is obtained by collecting all nonzero terms on one side of the equation.) The zeros are found by solving $f(x)=0$, resulting in $x=1$ and $x=2$. Hence, the roots of the polynomial equation $x^{2}-3 x+1=-1$ are $x=1,2$; the zeros of $f(x)=x^{2}-3 x+2$ are $x=1,2$; and the x-intercepts of the graph of $f(x)$ are $x=1,2$, or, alternately, $(1,0)$ and $(2,0)$.
- Know how to use a graphing calculator to determine the approximate x-intercepts of a graph.
- Definition To divide polynomial $P(x)=a x^{n}+b x^{n-1}+\cdots$ by $x-k$, perform synthetic division as follows:
- Write k (not $-k$) and the coefficients of $P(x)$ on the first line. Separate the k from the coefficients in some way. Remember to insert any missing zeros.
- Leave a blank second line. Bring down a to the third line; this is the first coefficient of the quotient.

Topic 1D: Roots of Quadratic and Polynomial Equations

- Multiply this quotient coefficient by k and write the result, ka, beneath the next $P(x)$ coefficient, b. Add b to $k a$. The result, $b+k a$, written in the third line, is the second quotient coefficient.
- Continue the pattern. Multiply each new quotient coefficient by k and add the result to the next coefficient of $P(x)$. The result of the last addition is the remainder r.
- Remainder Theorem If a polynomial $P(x)$ is divided by $x-k$, the remainder is $r=P(k)$.
- Definition By the Remainder Theorem, you can divide $P(x)$ by $x-k$ to find $P(k)$. If synthetic division is used to divide, the process is called synthetic substitution. Example: Use synthetic substitution to find $P(5)$ for $P(x)=-2 x^{4}+6 x^{3}+15 x-1$. The correct answer is $P(x)=$ -426.
- Factor Theorem For polynomial $P(x),(x-a)$ is a factor of $P(x)$ if and only if $P(x)=0$.
- If a polynomial equation $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}=0$ has rational roots, use the Rational Root Theorem to find these roots. To do so, follow these steps:
- Find all the factors of a_{n} and a_{0}.
- Let q be one of the factors of a_{n} and p be one of the factors of a_{0}. List all possible rational numbers $\frac{p}{q}$.
- Test if $\left(x-\frac{p}{q}\right)$ is a factor of the polynomial using synthetic division. If a polynomial has a rational root, then it will be one of the $\frac{p}{q}$ terms.
- Vieta's Theorem (for quadratic equations) For the quadratic equation $a x^{2}+b x+c=0$ with roots r_{1} and r_{2}, the following are true: $r_{1}+r_{2}=-\frac{b}{a}$ and $r_{1} \cdot r_{2}=\frac{c}{a}$.
- Vieta's Theorem (for sum of roots) For a general polynomial of degree $n, P(x)=a_{n} x^{n}+$ $a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$, the sum of the n roots is $r_{1}+r_{2}+\cdots+r_{n}=-\frac{a_{n-1}}{a_{n}}$. For example, for the polynomial $7 x^{3}-6 x^{2}+5 x-4$, the sum of the $n=3$ roots is $r_{1}+r_{2}+r_{3}=-\frac{a_{3-1}}{a_{3}}=$ $-\frac{a_{2}}{a_{3}}-\frac{(-6)}{7}=\frac{6}{7}$.
- Vieta's Theorem (for product of roots) For a general polynomial of degree $n, P(x)=a_{n} x^{n}+$ $a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$, the product of the n roots is $r_{1} r_{2} \cdots r_{n}=(-1)^{n} \frac{a_{0}}{a_{n}}$
- Vieta's Theorem (for sum of products of pairs) For a general polynomial of degree $n, P(x)=$ $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$, the sum of the products of all paired roots is $\left(r_{1} r_{2}+r_{1} r_{3}+\cdots+r_{1} r_{n}\right)+\left(r_{2} r_{3}+r_{2} r_{4}+\cdots+r_{2} r_{n}\right)+\cdots+r_{n-1} r_{n}=\frac{a_{n-2}}{a_{n}}$
- Notation The inverse of a function $f(x)$ is written as $f^{-1}(x)$. Generally ${ }^{1}$, the inverse function is an "undo" of the function, so $f\left(f^{-1}(x)\right)=f^{-1}(f(x))=x$.

Problems

For the following problems, assume a calculator is not allowed unless stated. Note that, even when a calculator is allowed, it may not be necessary or even helpful (a calculator may have been allowed on the exam in order to solve a different problem).

[^0]
Topic 1D: Roots of Quadratic and Polynomial Equations

Problem \#1 ("quickie"; 1 point)

Goal: Know this topic so well that you can solve a Minnesota State High School Mathematics League (MSHSML) problem \#1 in less than one minute.

1. Given $f(x)=3 x^{5}+5 x^{3}-2 x^{2}+82$, determine exactly $f\left(f^{-1}(f(1))\right)$. [calculator allowed] (MSHSML 2019-20 1D \#1)
2. Determine exactly all real solutions to the equation $x^{2}+8 x=8$. (MSHSML 2018-19 1D \#1)
3. Determine exactly the remainder when $x^{3}-6 x^{2}+4 x-5$ is divided by $x-3$. (MSHSML 2017-18 1D \#1)
4. Determine exactly the product of the zeros of the equation $(2 x-7)^{2}=36$. (MSHSML 2016-17 1D \#1)
5. Let $f(x)=x+3$ and $g(x)=x^{2}$. Determine exactly the value(s) of x for which $g(f(x))=0$. (MSHSML 2015-16 1D \#1)
6. Determine exactly the sum of the roots of the cubic polynomial $2 x^{3}-9 x^{2}+14 x-6$. (MSHSML 2014-15 1D \#1)
7. Let r_{1} and r_{2} be the distinct roots of $r^{2}-r-20$, with $r_{1}<r_{2}$. Determine r_{2} exactly. (MSHSML 2013-14 1D \#1)
8. Express $(x+1)(x+10)+(x+4)(x-4)$ as the product of two binomials, each with integer coefficients. [calculator allowed] (MSHSML 2012-13 1D \#1)
9. Write, in $x^{2}+b x+c=0$ form, the quadratic equation whose roots are $x=-3$ and $x=1$. [calculator allowed] (MSHSML 2011-12 1D \#1)
10. Determine exactly the least value of x that satisfies the equation $(x-4)(x+4)=9$. [calculator allowed] (MSHSML 2010-11 1D \#1)

Problem \#2 ("textbook"; 2 points)

Goal: Know this topic so well that you can solve an MSHSML problem \#2 in less than two minutes.

1. $f(x)=x^{2}+b x+12$. Determine for how many integer values of $b, f(x)$ has non-real zeros. [calculator allowed] (MSHSML 2019-20 1D \#2)
2. The solutions to $2 x^{2}+b x+c=0$ are b and c, where neither is zero. Determine exactly the ordered pair (b, c). (MSHSML 2018-19 1D \#2)
3. For what values of m does the product of the roots of $4(x-2 m)^{2}$ equal 11 ? (MSHSML 2017-18 1D \#2)
4. For what value of a does the polynomial $3 x^{2}+a x+10$ have 2 as a root? (MSHSML 2016-17 1D \#2)
5. Find the remainder when $2 x^{3}-9 x^{2}+14 x-6$ is divided by $x+2$. (MSHSML 2015-16 1D \#2)
6. Determine exactly the value of k for which the two solutions of $3 x^{2}-4 x+k=0$ are equal. (MSHSML 2014-15 1D \#2)
7. Let x_{1} and x_{2} be the solutions of $x^{2}-20 x+13=0$. Determine $\frac{1}{x_{1}}+\frac{1}{x_{2}}$ exactly. (MSHSML 2013-14 1D \#2)
8. What is the greatest integer c for which the quadratic polynomial $5 x^{2}+11 x+c$ has two distinct rational roots? [calculator allowed] (MSHSML 2012-13 1D \#2)
9. Find the remainder when $x^{13}+1$ is divided by $x-1$. [calculator allowed] (MSHSML 2011-12 1D \#2)
10. Determine exactly the coordinates (both of them) of the highest point of the graph of $y+x^{2}+$ $6 x=4$. [calculator allowed] (MSHSML 2010-11 1D \#2)

Problem \#3 ("textbook with a twist"; 2 points)
Goal: Know this topic so well that you can solve an MSHSML problem \#3 in less than three minutes.

1. $f(x)=a x^{2}$ with $a>0$. An equilateral triangle with side length k is placed on the parabola so that one of its vertices is on the vertex of the parabola and the other two vertices are on $f(x)$.

Topic 1D: Roots of Quadratic and Polynomial Equations

Write a formula for a, the leading coefficient of $f(x)$, in terms of k. (Be sure to simplify). [calculator allowed] (MSHSML 2019-20 1D \#3)
2. The function $f(x)=x^{3}+b x^{2}+c x+52$ has $\frac{13}{2-3 i}$ as one of its zeros. Determine exactly the ordered pair (b, c). (MSHSML 2018-19 1D \#3)
3. For what values of p will the quadratic function $f(x)=x^{2}-4 p x-9$ have a minimum value of -333? (MSHSML 2017-18 1D \#3)
4. Determine exactly all values of k for which the polynomials $x^{2}+2 x-5 k$ and $x^{2}-10 x-k$ share a common zero. (MSHSML 2016-17 1D \#3)

If you are able to solve MSHSML problem \#s 1, 2, and 3, in less than 1, 2, and 3 minutes, respectively, you will have at least 6 minutes (assuming a 12-minute, 4 -question exam) to solve problem \#4 ("challenge problem"; 2 points). Problem \#4 tends to be more varied in nature than problems \#1-3 and may require a broader knowledge in other mathematical areas (geometry, for example). For past MSHSML Meet 1 Event D \#4 problems, see previous exams.

[^0]: ${ }^{1}$ The caveat recognizes that the result assumes the function is a bijection, whereby the domain of the inverse is the same as the range of the function and the range of the inverse is the same as the domain of the function.

