Math Team Notes

Topic 2B: Triangular Figures and Solids

Subtopics

Topic 2B, Triangular figures and solids, includes the following subtopics.

2B Geometry: Triangular figures and solids
2B1 Medians, angle bisectors, and altitudes
2B2 Ceva's Theorem and Stewart's Theorem
2B3 Area of a triangle (including Hero's Formula)
2B4 Triangular prisms and pyramids (including surface area and volume)

Notes

- Definition A point is a midpoint of a line segment iff it divides the line segment into two equal segments.
- Definition A median of a triangle is a line segment that joins a vertex to the midpoint of the opposite side. A triangle has three medians, each of which is interior to the triangle (except for its endpoints which are on the triangle).
- Theorem $\ln \triangle A B C$, with side lengths a, b, and c opposite vertices A, B, and C, respectively, the median from C to $\overline{A B}$ (i.e., to the side with length c) has length $\frac{\sqrt{2 a^{2}+2 b^{2}-c^{2}}}{2}$.
- Definition Two or more lines are concurrent if they contain the same point.
- Theorem The medians of a triangle are concurrent.
- Definition The centroid of a triangle is the point in which its medians are concurrent.
- Definition A line bisects an angle iff it divides the angle into two equal angles.
- Definition A circle is inscribed in a polygon iff each side of the polygon is tangent to the circle. The polygon is said to be circumscribed about the circle. The circle is called the incircle of the polygon, and its center is called the incenter of the polygon.
- Theorem Every triangle has an incircle.
- Corollary The angle bisectors of a triangle are concurrent.
- Definition A corollary is a theorem that can be easily proved as a consequence of a postulate or another theorem.
- Theorem The angle bisector of an angle in a triangle divides the opposite side in the same ratio as the sides adjacent to the angle.
- Definition The distance between a point and a line is the length of the perpendicular segment from the point to the line.
- Definition An altitude of a triangle is the distance from a vertex to the line containing the opposite side. A triangle has three altitudes. Note that in an obtuse triangle (one with an angle greater than 90°), two altitude segments are exterior to the triangle.
- Theorem The area of a right triangle is half the product of its legs. In other words, for right triangle $\triangle A B C$ with right angle C (and thus hypotenuse c, and legs a and b), the area is Area $=\frac{1}{2} a b$.
- Theorem The area of a triangle is half the product of any base and corresponding altitude. (This is a generalization of the formula Area $=\frac{1}{2} a b$ to any triangle. You can think of b as any base (or side), and a being its corresponding altitude.)
- Corollary Triangles with equal bases and equal altitudes have equal areas.
- Heron's Theorem (aka Hero's Theorem or Hero's Formula) The area of a triangle with sides a, b, and c is Area $=\sqrt{s(s-a)(s-b)(s-c)}$, where s is the semiperimeter, equal to half of the triangle's perimeter, or $s=\frac{1}{2}(a+b+c)$.
- Theorem The lines containing the altitudes of a triangle are concurrent.

Math Team Notes

Topic 2B: Triangular Figures and Solids

- Definition The orthocenter of a triangle is the point in which the lines containing its altitudes are concurrent.
- Definition A cevian (CHAY-vee-un) of a triangle is a line segment that joins a vertex of the triangle to a point on the opposite side. Note that a median is a cevian, but a cevian is not necessarily a median.
- Ceva's Theorem (CHAY-vuhz) Three cevians $\overline{A Y}, \overline{B Z}$, and $\overline{C X}$ of $\triangle A B C$ are concurrent iff $\frac{A X}{X B} \cdot \frac{B Y}{Y C} \cdot \frac{C Z}{Z A}=1$.
- Definition A prism is a three-dimensional solid object consisting of two bases (congruent polygons and their interiors that lie in parallel planes) and all the segments that connect a point in one base to a point in the other base. The parallel line segments that connect the corresponding vertices of these bases help form the n lateral faces, where n is the number of sides of each base. For example, a triangular prism has 2 congruent triangular bases and $n=3$ lateral (side) faces.
- Definition The lateral area of a prism is the sum of the areas of its lateral faces.
- Definition The total area or surface area of a prism is the sum of its lateral area and the area of its bases.
- Definition The altitude of a prism is a line segment that connects the planes of its bases and that is perpendicular to both of them.
- Postulate The volume of a prism is the product of the area of its base and its altitude: $V=B h$.
- Corollary The volume of a rectangular solid is the product of its length, width, and height: $V=$ lwh.
- Corollary The volume of a cube is the cube of its edge: $V=e^{3}$.
- Corollary The volume of a triangular prism is $V=B h=\frac{1}{2} a b h$, where a is the altitude of the base corresponding to base side b, and h is the altitude of the prism.
- Definitions A pyramid is a three-dimensional solid object consisting of one base (a polygon and its interior that lies in one plane), a point P not in the same plane as the base, and all the segments that connect P to a point in the base. The faces that are not the base are the lateral faces and the edges in which they intersect each other are the lateral edges. The lateral edges meet at the apex of the pyramid.
- Definition the altitude of a pyramid is the perpendicular line segment connecting the apex to the plane of its base. It is also the length of this segment.
- Theorem The volume of any pyramid is one-third of the product of the area of its base and its altitude: $V=\frac{1}{3} B h$.
- Stewart's Theorem (From Art of Problem Solving). Note that, in the figure, $a=m+n$.

Given a triangle $\triangle A B C$ with sides of length a, b, c opposite vertices are A, B, C, respectively. If cevian $A D$ is drawn so that $B D=m$, $D C=n$ and $A D=d$, we have that $b^{2} m+c^{2} n=a m n+d^{2} a$. (This is also often written $m a n+d a d=b m b+c n c$, a form which invites mnemonic memorization, i.e. "A man and his dad put a bomb in the sink.")

- Theorem (can use if you know determinants) A triangle with vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$ has an area equal to the absolute value of $\frac{1}{2}\left|\begin{array}{ccc}x_{1} & x_{2} & x_{3} \\ y_{1} & y_{2} & y_{3} \\ 1 & 1 & 1\end{array}\right|$. For example the area of the triangle with vertices

Math Team Notes

Topic 2B: Triangular Figures and Solids

$$
\begin{aligned}
& \text { (3,5), }(6,-3),(-2,-2) \text { is } \text { Area }=\frac{1}{2}\left|\begin{array}{ccc}
3 & 6 & -2 \\
5 & -3 & -2 \\
1 & 1 & 1
\end{array}\right|=\frac{1}{2}\left[1\left|\begin{array}{cc}
6 & -2 \\
-3 & -2
\end{array}\right|-1\left|\begin{array}{cc}
3 & -2 \\
5 & -2
\end{array}\right|+1\left|\begin{array}{cc}
3 & 6 \\
5 & -3
\end{array}\right|\right]= \\
& \frac{1}{2}\{[6(-2)-(-2)(-3)]-[3(-2)-(-2) 5]+[3(-3)-6 \cdot 5]\}=\frac{1}{2}(-18-4-39)=30.5
\end{aligned}
$$

Problems

For the following problems, assume a calculator is not allowed unless stated.

Problem \#1 ("quickie"; 1 point)

Goal: Know this topic so well that you can solve a Minnesota State High School Mathematics League (MSHSML) problem \#1 in less than one minute.

1. When the height of a triangle is quadrupled (made four times larger), its area increased by 2019. What is the area of the original triangle? [calculator allowed] (MSHSML 2019-20 2B \#1)
2. In $\triangle A B C$ at the right, $A C=9$ and $B C=5$. Segments $\overline{B E}, \overline{C D}$, and $\overline{A F}$ are concurrent at G. If $B F=2, C E=4$, and $A D=6$, determine exactly $D B$. [calculator allowed] (MSHSML 2018-19 2B \#1)

Problem \#2 ("textbook"; 2 points)

Goal: Know this topic so well that you can solve an MSHSML problem \#2 in less than two minutes.

1. In $\triangle A B C, A B=13, B C=4$, and $C A=15$. Cevian $\overline{A D}$ is drawn such that $C D=1$. Determine exactly [$A D C$]. ${ }^{1}$ [calculator allowed] (MSHSML 2019-20 2B \#2)
2. What is the area of a triangle with side lengths 25,25 , and 48 ? [calculator allowed] (MSHSML 2018-19 2B \#2)

Problem \#3 ("textbook with a twist"; 2 points)

Goal: Know this topic so well that you can solve an MSHSML problem \#3 in less than three minutes.

1. In Figure 3, $\mathrm{AB}=5, \mathrm{AC}=7, B C=4 \sqrt{7}$, and $\overline{A M}$ is a median of $\triangle A B C$. Determine exactly $A M$. [calculator allowed] (MSHSML 2019-20 2B \#3)

2. $\triangle A B C$ has an area of 16 . If $A C=8$ and median $\overline{B M}$ has a length of $\sqrt{17}$, determine exactly the perimeter of $\triangle A B C$. [calculator allowed] (MSHSML 2018-19 2B \#3)

Problem \#4 ("challenge"; 2 points)

Goal: Know this topic so well that you can solve an MSHSML problem \#4 in less than six minutes.

[^0]
Math Team Notes

Topic 2B: Triangular Figures and Solids

1. In Figure 4, $M N=12, N P=14, M P=16, \overline{M R} \perp \overline{N P}$, and $\overline{M T}$ bisects $\angle N M P$. Determine exactly the area of $\triangle M R T$. [calculator allowed] (MSHSML 201920 2B \#4)

Figure 4
2. If two sides of a triangle have lengths 25 and 20 and the median to the third side has a length of 19.5, determine exactly the length of the third side. [calculator allowed] (MSHSML 2018-19 2B \#4)

If you are able to solve MSHSML problem \#s 1, 2, and 3, in less than 1, 2, and 3 minutes, respectively, you will have at least 6 minutes (assuming a 12-minute, 4-question exam) to solve problem \#4 ("challenge problem"; 2 points). Problem \#4 tends to be more varied in nature than problems \#1-3 and may require a broader knowledge of other mathematical areas (algebra, for example). For more MSHSML Meet 2 Event B problems, see past exams, which date back to 1980-81.

[^0]: ${ }^{1}$ Recall the notation $[A B C]$ indicates the area of the polygon (a triangle, in this example) $A B C$.

