Math Team Notes
 Topic 2C: Trigonometry

Subtopics

Topic 2C, Trigonometry, includes the following subtopics.
2C Precalculus \& Trigonometry: Trigonometry
2C1 Functions of sums of angles and sums of functions of angles
2 C2 Half-angle formulas and double-angle formulas
2C3 Power-reduction formulas
x Not required: formulas for $\sin A+\sin B$, etc.

Notes

- Pythagorean identities

These identities are derived from the right-triangle-based trigonometric function definitions (see Meet 1 Event C notes) and the Pythagorean Theorem. For example, for a right triangle with legs opp and adj and hypotenuse hyp, opp ${ }^{2}=a d j^{2}=h y p^{2} \Rightarrow \frac{o p p^{2}}{h y p^{2}}=\frac{a d j^{2}}{h y p^{2}}=\frac{h y p^{2}}{h y p^{2}} \Rightarrow \sin ^{2} \theta+\cos ^{2} \theta=1$.

- $\sin ^{2} \theta+\cos ^{2} \theta=1$
- $\tan ^{2} \theta+1=\sec ^{2} \theta$
- $\cot ^{2} \theta+1=\csc ^{2} \theta$
- Angle-sum identities
- $\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B$
- $\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B$
- $\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$
- Double-angle identities

These are derived from the angle-sum identities. For example, $\sin (2 \theta)=\sin (\theta+$
$\theta)=\sin \theta \cos \theta+\cos \theta \sin \theta=2 \sin \theta \cos \theta$
$\circ \sin (2 \theta)=2 \sin \theta \cos \theta$
\circ
\circ
\circ
$\circ \tan (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta=2 \cos ^{2} \theta-1=1-2 \sin ^{2} \theta$
$1-\tan ^{2} \theta$

- Half-angle identities
- $\sin \left(\frac{\theta}{2}\right)=\sqrt{\frac{1-\cos \theta}{2}}$
- $\cos \left(\frac{\theta}{2}\right)=\sqrt{\frac{1+\cos \theta}{2}}$
- $\tan \left(\frac{\theta}{2}\right)=\frac{1-\cos \theta}{\sin \theta}=\frac{\sin \theta}{1+\cos \theta}$
- Power-reduction identities

These are derived from the product identities. For example, $\sin ^{2} \theta=\sin \theta \sin \theta=\frac{1}{2}[-\cos (\theta+\theta)+$ $\cos (\theta-\theta)]=\frac{1}{2}(-\cos (2 \theta)+1)=\frac{1}{2}(1-\cos (2 \theta))$.

- $\sin ^{2} \theta=\frac{1}{2}(1-\cos (2 \theta))$
- $\cos ^{2} \theta=\frac{1}{2}(1+\cos (2 \theta))$
- $\tan ^{2} \theta=\frac{1-\cos (2 \theta)}{1+\cos (2 \theta)}$

Math Team Notes

Topic 2C: Trigonometry

- Even- and odd-function identities

These are best remembered by thinking how the function is graphed. The graph of an even function is symmetric with respect to the y-axis, and the graph of an odd function is symmetric with respect to the origin.

$$
\begin{array}{lll}
\circ & \sin (-\theta)=-\sin \theta & \text { (odd) } \\
\circ & \cos (-\theta)=\cos \theta & \text { (even) } \\
\circ & \tan (-\theta)=-\tan \theta & \text { (odd) }
\end{array}
$$

- Complementary-angle identities

$$
\begin{array}{ll}
\circ & \sin \left(\frac{\pi}{2}-\theta\right)=\cos \theta \\
\circ & \cos \left(\frac{\pi}{2}-\theta\right)=\sin \theta
\end{array}
$$

- Product identities

These are derived from the angle-sum identities. For example, $\sin (A+B)+\sin (A-B)=$ $(\sin A \cos B+\cos A \sin B)+(\sin A \cos B-\cos A \sin B)=2 \sin A \cos B$, so $\sin A \cos B=$ $\frac{1}{2}[\sin (A+B)+\sin (A-B)]$.

- $\sin A \sin B=\frac{1}{2}[-\cos (A+B)+\cos (A-B)]$
- $\cos A \cos B=\frac{1}{2}[\cos (A+B)+\cos (A-B)]$
- $\sin A \cos B=\frac{1}{2}[\sin (A+B)+\sin (A-B)]$
- $\tan A \tan B=\frac{\cos (A-B)-\cos (A+B)}{\cos (A-B)+\cos (A+B)}$
- Other multiples of $\mathbf{1 5}^{\circ}$ identities (not required, though occasionally useful)

These are derived from the angle-sum identities. For example, to find an expression for $\sin 15^{\circ}$, note that $15^{\circ}=45^{\circ}-30^{\circ}$ and evaluate $\sin 15^{\circ}=\sin \left(45^{\circ}-30^{\circ}\right)=\sin 45^{\circ} \cos 30^{\circ}+\cos 45^{\circ} \sin 30^{\circ}=$ $\left(\frac{\sqrt{2}}{2}\right)\left(\frac{\sqrt{3}}{2}\right)-\left(\frac{\sqrt{2}}{2}\right)\left(\frac{1}{2}\right)=\frac{\sqrt{6}}{4}-\frac{\sqrt{2}}{4}=\frac{\sqrt{6}-\sqrt{2}}{4}$.

- $\sin 15^{\circ}=\frac{\sqrt{6}-\sqrt{2}}{4}=\cos 75^{\circ}$
- $\cos 15^{\circ}=\frac{\sqrt{6}+\sqrt{2}}{4}=\sin 75^{\circ}$
- $\tan 15^{\circ}=2-\sqrt{3} \quad \tan 75^{\circ}=2+\sqrt{3}$
- Multiples of $\mathbf{1 8}^{\circ}$ identities (not required, though occasionally useful)
- $\sin 18^{\circ}=\cos 72^{\circ}=\frac{1-\sqrt{5}}{4}$
- $\cos 36^{\circ}=\sin 54^{\circ}=\frac{1+\sqrt{5}}{4}$
- Triple-angle identities (not required, though occasionally useful)
- $\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$
- $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$
- $\tan 3 \theta=\frac{\tan \theta\left(\tan ^{2} \theta-3\right)}{3 \tan ^{2} \theta-1}$
- Sum-to-product identities (not required, though occasionally useful)
- $\sin A \pm \sin B=2 \sin \frac{A \pm B}{2} \cos \frac{A \mp B}{2}$
- $\cos A+\cos B=2 \cos \frac{A+B}{2} \cos \frac{A-B}{2} \quad \cos A-\cos B=2 \sin \frac{A+B}{2} \sin \frac{A-B}{2}$
- $\tan A \pm \tan B=\frac{\sin (A \pm B)}{\cos A \cos B}$

Math Team Notes
 Topic 2C: Trigonometry

Problems

For the following problems, assume a calculator is not allowed unless stated. Keep in mind that even when a calculator is allowed it may not be necessary or even worthwhile (because the brain is faster).

Problem \#1 ("quickie"; 1 point)

Goal: Know this topic so well that you can solve a Minnesota State High School Mathematics League (MSHSML) problem \#1 in less than one minute.

1. If $\frac{\pi}{2}<B<\pi$ and $\sin B=\frac{5}{13^{\prime}}$, determine exactly $\sin (2 B)$. (MSHSML 2019-20 2C \#1)
2. Determine exactly the smallest possible positive degree measure for θ, given that $\tan 9 \theta=1$. (MSHSML 2018192C \#1)

Problem \#2 ("textbook"; 2 points)

Goal: Know this topic so well that you can solve an MSHSML problem \#2 in less than two minutes.

1. If $\pi<A<\frac{3 \pi}{2}$ and $\sin A=-\frac{7}{25}$, determine exactly $\cos \frac{A}{2}$. (MSHSML 2019-20 2C \#2)
2. Determine exactly the value of $\tan \frac{5 \pi}{12}$. (MSHSML 2018-19 2C \#2)

Problem \#3 ("textbook with a twist"; 2 points)

Goal: Know this topic so well that you can solve an MSHSML problem \#3 in less than three minutes.

1. In $\triangle A B C, \cos (A+B)=\frac{2}{3}$ and $\sin (A+B)=\frac{3}{4}$. Determine exactly $\sin (2 C)$. (MSHSML 2019-20 2C \#3)
2. Determine exactly the smallest positive degree ind the values for x , given that $\tan x+\tan 47^{\circ}=\sqrt{3}-$ $\sqrt{3} \tan x \tan 47^{\circ}$. (MSHSML 2018-19 2C \#3)

Problem \#4 ("challenge"; 2 points)

Goal: Know this topic so well that you can solve an MSHSML problem \#4 in less than six minutes.

1. Determine exactly the maximum value of the function $f(x)=\frac{2 \sin ^{6} x \cdot \cos ^{2} x}{\left(\tan ^{2} x+1\right)^{2}}$. (MSHSML 2019-20 2C \#4)
2. Find the values of the constants A, B, and C that make the following equation an identity: $\sin x \sin \left(x+\frac{\pi}{3}\right)=A \sin 2 x+B \cos 2 x+C$. Express your answer as an ordered triple (A, B, C). (MSHSML 2018-19 2C \#4)

If you are able to solve MSHSML problem \#s 1, 2, and 3, in less than 1, 2 , and 3 minutes, respectively, you will have at least 6 minutes (assuming a 12-minute, 4 -question exam) to solve problem \#4 ("challenge problem"; 2 points). Problem \#4 tends to be more varied in nature than problems \#1-3 and may require a broader knowledge of other mathematical areas (algebra or geometry, for example). For more MSHSML Meet 2 Event C problems, see past exams, which date back to 1980-81.

