Math Team Notes
 Topic 2D: Analytic Geometry of Lines and Circles

Summary

The purpose of these notes is to support mathlete preparation for participation in Minnesota State High School Mathematics League Meet 2, Individual Event D: Algebra 2 \& Analysis. The notes primarily address the newly introduced subtopics, and are therefore not comprehensive; mathletes are encouraged to review material beyond these notes (including notes for prior meets).

Subtopics

Topic 2D, Analytic geometry of lines and circles, includes the following subtopics.

2D Algebra 2 and Analysis: Analytic Geometry of Lines and Circles

2D1 Slope, families of parallel, perpendicular, or coincident lines
2D2 Point-slope, slope-intercept, intercept, normal forms of a line
2D3 Intersections (as a solution of system of equations)

Notes

- Definition The slope of a line is the ratio of the vertical change (rise) to the horizontal change (run).
- Definition Two or more lines are parallel if they have the same slope.
- Definition Two lines are perpendicular if their slopes multiply to -1 . Equivalently, two lines are perpendicular if their slopes are negative reciprocals of each other.
- Definition A family of lines is a set of lines that has something in common. There are three types:
- A family of parallel lines is a set of lines that each have the same slope.
- A family of coincident lines is a set of lines that each pass through a single point.
- A family of perpendicular lines is a set of lines that are each perpendicular to a given line through a given point. In a plane, such a "family" consists of only one line. (However, the family becomes more interesting in dimensions greater than 2 .)
- If $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are the coordinates of any two distinct points on the same line, the slope m of that line may be calculated using the formula $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\text { rise }}{\text { run }}$.
- Definition A linear equation written in the form $y=m x+b$ is written in slope-intercept form, where m is the slope of the line and b is the y-intercept. For example, in the equation $y=$ $-\frac{2}{3} x+4$, the slope is $-\frac{2}{3}$ and the y-intercept is 4 .
- Definition A linear equation written in the form $a x+b y=c$ is written in standard form, where a, b, and c are real numbers and a and b are not both zero. Some textbooks define standard form slightly differently, as $a x+b y+c=0$. Sometimes standard form is termed general form.
- To graph a linear equation written in standard form, rather than convert the equation to slopeintercept form it is often easier and quicker to graph using intercepts. For example, to graph the line $2 x+3 y=12$, find the x-intercept by setting $y=0$ and solve for the x-intercept as $x=$ $\frac{12}{2}=6$, and find the y-intercept by setting $x=0$ and solve for the y-intercept as $y=\frac{12}{3}=4$. Then use these two points (the intercepts) to draw the line.
- Definition A linear equation written in the form $y-y_{1}=m\left(x-x_{1}\right)$ is written in point-slope form. Note the similarity with $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.

Math Team Notes

Topic 2D: Analytic Geometry of Lines and Circles

- Given a slope and a point, one can use the point-slope form to write the slope-intercept form of the line. For example, a line with slope -2 that passes through the point $(10,12)$ may first be written as $y-12=-2(x-10)$, and then rearranged to obtain $y=-2 x+32$.
- If you know the coordinates of two points on a line, you can use these to find the slope via $m=$ $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$. Then you can substitute the value of m and one of the points in the point-slope form, then solve for y to write the equation in slope-intercept form.
- Definition A linear equation written in the form $\frac{x}{a}+\frac{y}{b}=1$ is written in intercept form, where $a, b \neq 0$. The x-intercept is a and the y-intercept is b; the line intercepts the x-axis at the point $(a, 0)$ and intercepts the y-intercept at the point $(0, b)$.
- Definition A linear equation written in the form $x \cos \theta+y \sin \theta=p$ is written in normal form, where p is the (positive) distance of the normal (i.e., perpendicular) segment from the origin to the line, and θ is the oriented (signed) angle from the positive x-axis to the normal segment.
- To convert from standard form $a x+b y=c$ to normal form, divide each coefficient by $\frac{c}{|c|} \sqrt{a^{2}+b^{2}} .{ }^{1}$
- The equation of a circle with center (h, k) and radius r is $(x-h)^{2}+(x-k)^{2}=r^{2}$.
- An interesting analysis of circle-line intersections is given at http://mathworld.wolfram.com/Circle-LineIntersection.html

Problems

For the following problems, assume a calculator is not allowed unless stated. Keep in mind that even when a calculator is allowed it may not be necessary or even worthwhile (because the brain is faster).

Problem \#1 ("quickie"; 1 point)

Goal: Know this topic so well that you can solve a Minnesota State High School Mathematics League (MSHSML) problem \#1 in less than one minute.

1. Determine exactly the point of intersection of the line defined by $f(x)=\frac{3 x+2}{6}$ and the line defined by $f^{-1}(x)$. [calculator allowed] (MSHSML 2019-20 2D \#1)
2. Calculate the slope of the line $8 x+11 y-13=0$. [calculator allowed] (MSHSML 2018-19 2D \#1)

Problem \#2 ("textbook"; 2 points)

Goal: Know this topic so well that you can solve an MSHSML problem \#2 in less than two minutes.

1. Let l_{1} be the line $5 x-4 y=9$ and l_{2} be the line $10 x-A y=2$, where A is a constant. There is one value for A such that $l_{1} \| l_{2}$ and another value for A such that $l_{1} \perp l_{2}$. Determine exactly the product of these two values of A. [calculator allowed] (MSHSML 2019-20 2D \#2)
2. Determine exactly, in the form $A x+B y=C$, the equation of the line with a negative slope that contains the center and the y-intercept of the circle $(x-4)^{2}+(y-5)^{2}=65$. [calculator allowed] (MSHSML 2018-19 2D \#2)
${ }^{1}$ Note this divisor can be written using the sign function as $\frac{c}{|c|} \sqrt{a^{2}+b^{2}}=\operatorname{sgn}(c) \sqrt{a^{2}+b^{2}}$, where $\operatorname{sgn}(x)=\left\{\begin{array}{cc}1 & x>0 \\ 0 & x=0 \\ -1 & x<0\end{array}\right.$

Math Team Notes

Topic 2D: Analytic Geometry of Lines and Circles

Problem \#3 ("textbook with a twist"; 2 points)

Goal: Know this topic so well that you can solve an MSHSML problem \#3 in less than three minutes.

1. A circle defined by $x^{2}+y^{2}+9 x-6 y=C$ is tangent to the x-axis. Determine exactly the value of C. [calculator allowed] (MSHSML 2019-20 2D \#3)
2. A regular octagon lies in the first quadrant with its center at (m, m), and one of its sides lies on the x-axis. Determine exactly the product of the slopes of all the diagonals with positive slopes. [calculator allowed] (MSHSML 2018-19 2D \#3)

Problem \#4 ("challenge"; 2 points)

Goal: Know this topic so well that you can solve an MSHSML problem \#4 in less than six minutes.

1. The four points $(a+1,1),(2 a+1,2),(17, a)$, and $(10, b)$ are collinear and $a>0$. Determine exactly the y-intercept of the line perpendicular to this through ($10, b$). [calculator allowed] (MSHSML 2019-20 2D \#4)
2. Two circles intersect at $(4,1)$ and $(7,2)$. One circle is centered on the x-axis while the other circle is centered on the y-axis. Determine exactly the area of the triangle formed by the line containing these two centers, the x-axis, and the y-axis. [calculator allowed] (MSHSML 2018-19 2D \#4)

If you are able to solve MSHSML problem \#s 1, 2, and 3, in less than 1, 2, and 3 minutes, respectively, you will have at least 6 minutes (assuming a 12 -minute, 4 -question exam) to solve problem \#4 ("challenge problem"; 2 points). Problem \#4 tends to be more varied in nature than problems \#1-3 and may require a broader knowledge of other mathematical areas (geometry, for example). For more MSHSML Meet 2 Event D problems, see past exams, which date back to 1980-81.

