Math Team Notes
 Topic 3B: Polygonal Figures and Solids

Subtopics

Topic 3B, Polygonal Figures and Solids, includes the following subtopics.

3B Geometry: Polygonal Figures and Solids

3B1 Special quadrilaterals and regular polygons (including area formulas)
3B2 Intersecting diagonals
3B3 Circumscribed polygons and Ptolemy's Theorem
3B4 Polygonal prisms and pyramids (including surface area and volume)

Notes

- Definition A polygon is a figure that is bounded by line segments and lies in a plane; it is a twodimensional figure.
- Definitions A triangle, quadrilateral, pentagon, hexagon, heptagon, octagon, nonagon, and decagon have $3,4,5,6,7,8,9$, and 10 sides, respectively. An \boldsymbol{n}-gon is a general term for a polygon with n sides which allows us to avoid creating (and remembering!) specific names for an infinite number of polygons. For example, a pentagon with 17 sides may be referred to as a 17-gon. It is acceptable to refer to a polygon with a name, even a well-known name, using n-gon terminology. For example, a triangle may be referred to as a 3-gon. Other names include dodecagon (12 sides) and icosagon (20 sides).
- Definition An altitude of any quadrilateral that has parallel sides is the distance between them. Also, altitude can refer to any perpendicular line segment that connects points on the lines of the parallel sides.
- Definitions A polygon is convex if, for each pair of points inside the polygon, the line segment connecting them lies entirely inside the polygon. Conversely, a polygon is concave if for a pair of points inside the polygon, the line segment connecting them does not lie entirely inside the polygon.
- Definition A diagonal of a polygon is a line segment that connects any two nonconsecutive vertices.
- Theorem The sum of the angles of a quadrilateral is 360°.
- Definition A rectangle is a quadrilateral each of whose angles is a right angle.
- Corollary A quadrilateral is equiangular iff it is a rectangle.
- Definition A parallelogram is a quadrilateral whose opposite sides are parallel.
- Theorem The opposite sides and angles of a parallelogram are equal.
- Theorem The diagonals of a parallelogram bisect each other.
- Theorem A quadrilateral is a parallelogram if its opposite angles are equal.
- Theorem A quadrilateral is a parallelogram if two opposite sides are both parallel and equal.
- Theorem A quadrilateral is a parallelogram if its diagonals bisect each other.
- Definition A square is a quadrilateral all of whose sides and angles are equal.
- Definition A rhombus is a quadrilateral all of whose sides are equal.
- Theorem All rectangles are parallelograms.
- Theorem All rhombuses are parallelograms.
- Theorem The diagonals of a rectangle are equal.
- Theorem The diagonals of a rhombus are perpendicular.
- Definition A trapezoid is a quadrilateral that has exactly one pair of parallel sides. The parallel sides are called the bases of the trapezoid, and the non-parallel sides are called its legs.
- Definition An isosceles trapezoid is a trapezoid whose legs are equal.
- Theorem The base angles of an isosceles trapezoid are equal.
- Theorem The diagonals of an isosceles trapezoid are equal.
- Definition A kite is a quadrilateral with two pairs of equal-length adjacent sides.
- Theorem A quadrilateral is a kite iff one diagonal is the perpendicular bisector of the other.
- Theorem A quadrilateral is a kite iff one diagonal is the angle bisector of the two angles it meets.

Topic 3B: Polygonal Figures and Solids

- Theorem A quadrilateral is a kite iff one diagonal is a line of symmetry, i.e., it divides the quadrilateral into two congruent triangles.
- Theorem The diagonals of a kite are perpendicular.
- Definition A polygonal region is the union of a polygon and its interior.
- Definition The area of a polygon is the measure of the region bounded by the polygon, i.e., its polygonal region.
- Postulate Every polygonal region has a positive number called its area such that (1) congruent triangles have equal areas, and (2) the area of a polygonal region is equal to the sum of the areas of its nonoverlapping parts.
- Theorem The area of a rectangle is the product of its base and altitude.
- Corollary The area of a square is the square of its side.
- [Triangle area theorems not included here - see Meet 2 Event B notes]
- Theorem The area of a parallelogram is the product of any base and corresponding altitude.
- Theorem The area of a trapezoid is half the product of its altitude and the sum of its bases.
- Theorem The area of a kite is $\frac{1}{2} p q$, where p and q are its diagonal lengths.
- Theorem The area of a kite is $a b \sin \theta$, where a and b are the lengths of two unequal sides and θ is the angle between unequal sides.
- Definition A polygon is cyclic iff there exists a circle that contains all of its vertices.
- Definitions A polygon is inscribed in a circle iff each vertex of the polygon lies on the circle. The circle is said to be circumscribed about the polygon.
- Theorem Every triangle is cyclic.
- Corollary The perpendicular bisectors of the sides of a triangle are concurrent.
- Theorem A quadrilateral is cyclic iff a pair of its opposite angles are supplementary.
- Ptolemy's Theorem The sum of the products of the opposite side of a cyclic quadrilateral is equal to the product of its diagonals. Alternately: if $A B C D$ is a cyclic quadrilateral, then $A B \times C D+A D \times B C=A C \times B D$ (see figure at right). Note that when $A B C D$ is a rectangle, the result is the Pythagorean Theorem (which is helpful for remembering Ptolemy's Theorem).
- Brahmagupta's Theorem If a cyclic quadrilateral has perpendicular diagonals, then any line through their point of intersection that is perpendicular to a side of the quadrilateral will bisect the opposite side.

- Brahmagupta's Area Theorem The area of cyclic quadrilateral is $A=$ $\sqrt{(s-a)(s-b)(s-c)(s-d)}$, where a, b, c, and d are the lengths of the sides of the quadrilateral and $s=\frac{a+b+c+d}{2}$ is its semiperimeter.
- Definitions A circle is inscribed in a polygon iff each side of the polygon is tangent to the circle. The polygon is said to be circumscribed about the circle. The circle is called the incircle of the polygon, and its center is called the incenter of the polygon.
- Theorem Every triangle has an incircle.
- Corollary The angle bisectors of a triangle are concurrent.
- Definition A regular polygon is a convex polygon that is both equilateral and equiangular.
- Theorem Every regular polygon is cyclic.
- Definition The center of a regular polygon is the center of its circumscribed circle.
- Definition A central angle of a regular polygon is an angle formed by radii drawn to two consecutive vertices.
- Definition An apothem (A-puh-them) of a regular polygon is a perpendicular line segment from its center to one of its sides.
- Theorem The perimeter p of a regular polygon having n sides of length s is $p=n s$.

Topic 3B: Polygonal Figures and Solids

- Theorem The perimeter p of a regular polygon having n sides is $p=2 N r$, where $N=n \sin \frac{180^{\circ}}{n}$ and r is the radius. Note that as n gets larger, N approaches π (from below), as we would expect, since the circumference (perimeter) of a circle is $2 \pi r$.
- Theorem The area A of a regular polygon with perimeter p and apothem a is $A=\frac{1}{2} p a$.
- Theorem The area A of a regular polygon having n sides is $A=M r^{2}$, where $M=n \sin \frac{180^{\circ}}{n} \cos \frac{180^{\circ}}{n}$ and r is the radius.
- Definition The circumference of a circle is the limit of the perimeters of the inscribed regular polygons.
- Definition A polyhedron is a figure that is bounded by polygons and exists in space; it is a threedimensional figure.
- Definitions A cube is a polyhedron with six square sides
- Definitions (formal) Suppose A and B are two parallel planes, R is a polygonal region in one plane, and l is a line that intersects both planes but not R . The solid made up of all segments parallel to line l that connect a point of region R to a point of the other plane is a prism. (informal) a solid "straight tube" with two ends that are congruent to each other and to any parallel cross-section.
- Definitions The two congruent faces of a prism are called its bases. The rest of the faces of the prism are its lateral faces. The edges in which the lateral faces intersect one another are its lateral edges.
- Definitions If the lateral edges of a prism are perpendicular to the planes of its bases, the prism is a right prism and its lateral faces are rectangles. If the lateral edges of a prism are oblique (not perpendicular) to the planes of its bases, the prism is an oblique prism.
- Definitions The lateral area of a prism is the sum of the areas of its lateral faces. The total area of a prism is the sum of its lateral area and the areas of its bases.
- Definition An altitude of a prism is a line segment that connects the planes of its bases and that is perpendicular to both of them.
- Definition A cross section of a geometric solid is the intersection of a plane and the solid.
- Postulate (Cavalieri's Principle) Consider two geometric solids and a plane. If every plane parallel to this plane that intersects one of the solids also intersects the other so that the resulting cross sections have equal areas, then the two solids have equal volumes. [insert diagram]
- Postulate The volume of any prism is the product of the area of its base and its altitude: $V=B h$.
- Corollary The volume of a rectangular solid is the product of its length, width, and height: $V=l w h$.
- Corollary The volume of a cube is the cube of its edge: $V=e^{3}$.
- Definitions Suppose that A is a plane, R is a polygonal region in plane A , and P is a point not in plane A . The solid made up of all segments that connect P to a point of region R is a pyramid. The face of the pyramid that lies in this plane is its base. The rest of its faces are the lateral faces and the edges in which they intersect each other are its lateral edges. The lateral edges meet at the apex of the pyramid.
- Definition The altitude of a pyramid is the perpendicular line segment connecting the apex to the plane of its base (geometric object). It is also the length of this segment (numerical value).
- Theorem The volume of any pyramid is one-third of the product of the area of its base and its altitude: $V=\frac{1}{3} B h$.

Math Team Notes

Topic 3B: Polygonal Figures and Solids

Problems

For the following problems, assume a calculator is not allowed unless stated.

Problem \#1 ("quickie"; 1 point)

Goal: Know this topic so well that you can solve a Minnesota State High School Mathematics League (MSHSML) problem \#1 in less than one minute.

1. A cube has side length of 3 . A cylinder has a height of 3 . They both have the same volume. Determine exactly the radius of the cylinder. [calculator allowed] (MSHSML 2019-20 3B \#1)
2. If the areas of an equilateral triangle and a square are equal, determine exactly the ratio of the side of the square to the side of the triangle. Express your answer in the form $\left(\frac{a}{b}\right)^{C}$. [calculator allowed] (MSHSML 2018-19 38 \#1)
3. The diagonals of a rhombus are 6 and 8. Calculate the area of the rhombus. [calculator allowed] (MSHSML 201718 3B \#1)
4. Determine exactly the surface area of a sphere whose volume is 36π. [calculator allowed] (MSHSML 2016-17 3B \#1)

Problem \#2 ("textbook"; 2 points)

Goal: Know this topic so well that you can solve an MSHSML problem \#2 in less than two minutes.

1. A trapezoid has an area of 36 . One of the bases of the trapezoid has length 14 and the length of the other base is equal to the height of the trapezoid. Determine exactly the height of the trapezoid. [calculator allowed] (MSHSML 2019-20 3B \#2)
2. Given a $3 \times 3 \times 3$ cube, a $1 \times 1 \times 1$ cube is cut out of the middle of each face. What is the surface area of the resulting solid? [calculator allowed] (MSHSML 2018-19 3B \#2)
3. Determine exactly the area of an equilateral triangle if its circumscribed circle has a radius of 10 . [calculator allowed] (MSHSML 2017-18 3B \#2)
4. When the side lengths of a cube are all increased by 1 , the surface area increases by 90 . Calculate the volume of the original cube. [calculator allowed] (MSHSML 2016-17 3B \#2)

Problem \#3 ("textbook with a twist"; 2 points)

Goal: Know this topic so well that you can solve an MSHSML problem \#3 in less than three minutes.

1. Cyclic quadrilateral $A B C D$ has $A B=12, B C=8, C D=5$, and $D A=6$. If $A C$ and $B D$ are also integers, how long is $A C$? [calculator allowed] (MSHSML 2019-20 3B \#3)
2. In Figure 3, $A B C D$ is a square whose side length is $32 . D M B N$ is a rhombus whose vertices lie on the diagonals of the square. If the area of the rhombus is 75% of the area of the square, determine exactly the length of $\overline{M N}$. [calculator allowed] (MSHSML 201819 3B \#3)

Figure 3
3. An isosceles trapezoid has the lengths of its congruent sides and smaller base equal to 1 . Its diagonals and longer base have length x. Determine exactly the value of x. [calculator allowed] (MSHSML 2017-18 3B \#3)

Math Team Notes

Topic 3B: Polygonal Figures and Solids

4. Points A, B, C, and D are located on circle O as shown in Figure 3. If chords $A B=B C=3 C D=3 A D$, determine exactly the ratio $A C: B D$. [calculator allowed] (MSHSML 2016-17 3B \#3)

Figure 3

Problem \#4 ("challenge"; 2 points)

Goal: Know this topic so well that you can solve an MSHSML problem \#4 in less than six minutes.

1. As shown in Figure 4, four congruent circles are inscribed in equilateral $\triangle A B C$ so that each circle has three points of tangency. The centers of these four circles are connected to form concave quadrilateral $M N O P$. If $[A B C]=16 \sqrt{3}$, what is $[M N O P]$? [calculator allowed] (MSHSML 2019-20 3B \#3)

Figure 4
2. The solid shown in Figure 4 has a rectangular base BEFC with equilateral triangles $A B C$ and $D E F$ tilting toward each other. If M and N are the midpoints of $\overline{B C}$ and $\overline{E F}$, then $\Varangle A M N=\Varangle D N M=$ 60°. If $B C=43$ and $C F=28$, determine exactly the volume of the solid. [calculator allowed] (MSHSML 2018-19 3B \#4)

3. The area of quadrilateral $A B C D$ is $12 \mathrm{~cm}^{2}$. On sides $\overline{A B}, \overline{B C}, \overline{C D}$, and $\overline{D A}$ are points F, K, M, and P, respectively, such that $A F: F B=2: 1, B K: K C=1: 3, C M: M D=1: 1$, and $D P: P A=1: 5$. Determine exactly the area of hexagon $A F K C M P$. [calculator allowed] (MSHSML 2017-18 38 \#4)
4. Shown in Figure 4 is a pyramid which has a square base with side lengths of 6 , two sides of length 13 , and two sides of length 11 . Calculate the volume of this pyramid. [calculator allowed] (MSHSML 2016-17 3B \#4)

Figure 4

If you are able to solve MSHSML problem \#s 1, 2, and 3, in less than 1, 2 , and 3 minutes, respectively, you will have at least 6 minutes (assuming a 12-minute, 4 -question exam) to solve problem \#4 ("challenge problem"; 2 points). Problem \#4 tends to be more varied in nature than problems \#1-3 and may require a broader knowledge of other mathematical areas (algebra, for example). For more MSHSML Meet 3 Event B problems, see past exams, which date back to 1980-81.

