Math Team Notes

Topic 4B: Circular Figures and Solids

Summary

The purpose of these notes is to support mathlete preparation for participation in Minnesota State High School Mathematics League Meet 4, Individual Event B: Geometry. The notes primarily address the following newly introduced subtopics, and are therefore not comprehensive; mathletes are encouraged to review material beyond these notes, such as notes for prior meets and various textbooks. (And problems. Do lots and lots of problems.)

Subtopics

Topic 4B, Circular Figures and Solids, includes the following subtopics.

4B Geometry: Circular Figures and Solids

4B1 Central, inscribed, tangential, and exterior angles
4B2 Power of a point (chords, secants, tangents)
4B3 Interior and exterior tangents of two circles
4B4 Intercepted arcs
4B5 Areas of circles, sectors, circular segments
4B6 Cylinders, cones, and spheres (including volume and surface area)

Notes

All figures in these notes are from Geometry, $3^{\text {rd }}$ edition, by Harold R. Jacobs (2003), with the exception of those in the Power of a Point section, which are from The Art of Problem Solving Volume I: The Basics, $7^{\text {th }}$ edition, by Sandor Lehoczky and Richard Rusczyk (2015).

Circles, Radii, and Chords

- Definition A circle is the set of all points in a plane that are at a given distance from a given point in the plane. A circle does not contain its center, and it does not include its interior. The center is often designated by the point O. See figure.
- Definition A radius (geometrical object) of a circle is a line segment that connects the center of the circle to any point on it. The radius (number) of a circle is the length of one
 of these line segments. See figure.
- Corollary All radii of a circle are equal.
- Definition Circles are concentric iff they lie in the same plane and have the same center.
- Definition A chord of a circle is a line segment that connects two points of the circle. See figure.
- Definition A diameter (geometrical object) of a circle is a chord that contains the center. The diameter (number) of a circle is the length of one of these chords. See figure.

- Theorem If a line through the center of a circle is perpendicular to a chord, it also bisects the chord.
- Theorem If a line through the center of a circle bisects a chord that is not a diameter, it is also perpendicular to the chord.
- Theorem The perpendicular bisector of a chord of a circle contains the center of the circle.
- Tip The preceding three theorems are related and can be remembered as follows. See figure. Given that any two of the following statements are true, then all three statements are true:
- The line l contains the center of the circle.
- The line l Is perpendicular to the chord $\overline{A B}$.
- The line l bisects chord $\overline{A B}$.

Math Team Notes

Topic 4B: Circular Figures and Solids

Tangents

- Definition A tangent to a circle is a line in the plane of the circle that intersects the circle in exactly one point. For example, in the figure, line l is a tangent line.
- Theorem If a line is tangent to a circle, it is perpendicular to the radius drawn to the point of contact.
- Theorem If a line is perpendicular to a radius at its outer endpoint, it is tangent to the circle.

Central Angles and Arcs

- Definition A semicircle is half a circle.
- Definition A minor arc is an arc whose length is less than that of the semicircle of which it is part. ${ }^{1}$ A minor arc is usually named by just two points, called its endpoints. For example, in the figure $\overparen{A B}$ describes a minor arc.
- Definition A major arc is an arc whose length is greater than that of the semicircle it contains. A major arc (and a semicircle) is named with three letters, the middle letter naming a third point on the arc. For example, in the figure, $\overparen{A C B}$ describes a major arc.
- Definition A central angle of a circle is an angle whose vertex is the center of a circle. For example, in the figure, $\angle A O B$ is a central angle.
- Definition A reflex angle is an angle whose measure is more than 180°.
- Definition The degree measure of an arc is the measure of its central angle. The degree
 measure of $\overparen{A B}$ is designated $m \overparen{A B}$.
- Arc Addition Postulate If C is on $\overparen{A B}$, then $m \overparen{A C}+m \overparen{C B}=m \overparen{A C B}$. See figure.
- Theorem In a circle, arcs with equal degree measure have equal-length chords. In other words that are more catchy but less precise: In a circle, equal arcs have equal chords.

Inscribed Angles

- Definition An inscribed angle of a circle is an angle whose vertex is on a circle and whose sides each intersect the circle in another point. For example, in the figure, $\angle B A C$ is an inscribed angle.

- Theorem An inscribed angle is equal in measure to half its intercepted arc. For example, in the figure, $m \angle A P B=m \overparen{A B}$.
- Corollary Inscribed angles that intercept the same arc are equal.
- Corollary An angle inscribed in a semicircle is a right angle.

[^0]
Math Team Notes

Topic 4B: Circular Figures and Solids

Secant Angles

- Definition A secant is a line that intersects a circle in two points.
- Definition A secant angle is an angle whose sides are contained in two secants of a circle so that each side intersects the circle in at least one point other than the angle's vertex. When the intersection is outside the circle, it is also called an exterior angle of a circle.
- Theorem A secant angle whose vertex is inside a circle is equal in measure to half the sum of the arcs intercepted by it and its vertical angle. For example, in the left figure, $m \angle A B C=$ $\frac{1}{2}(m \overparen{A C}+m \overparen{D E})=\frac{1}{2}(80+40)=60^{\circ}$, and in the right figure, $m \angle A B C=\frac{1}{2}(m \overparen{A C}+m \overparen{D E})=\frac{1}{2}(100+20)=60^{\circ}$.

- Theorem A secant angle whose vertex is outside a circle is equal in measure to half the difference of its larger and smaller intercepted arcs. For example, in the left figure, $m \angle A B C=\frac{1}{2}(m \overparen{A C}-m \overparen{D E})=\frac{1}{2}(140-20)=60^{\circ}$, and in the right figure, $m \angle A B C=\frac{1}{2}(m \overparen{A C}-m \overparen{D E})=\frac{1}{2}(160-$ 40) $=60^{\circ}$

Power of a Point

- Power of a Point Theorem Given a point P and a line through P which intersects a circle in two points A and B, the product $P A \cdot P B$ is the same for any choice of line.
- Definition If a line is tangent to a circle, then any segment of the line having the point of tangency as one of its endpoints is a tangent segment to the circle. For brevity, it is sometimes called a tangent.
- Definition If a line is a secant line of a circle, then any segment of the line with one endpoint exterior to the circle and one endpoint on the circle, with the second intersecting point in between, is a secant segment. For brevity, it is sometimes called a secant.
- Note The Power of a Point Theorem has four distinct cases. These may be stated with corollaries.
- Corollary The tangent segments to a circle from an external point are equal. For example, in the first figure below, $A B=A C$.
- Corollary If a tangent segment and a secant segment intersect outside a circle at point P, the tangent segment intersecting the circle at point A and the secant segment intersecting the circle at points B and C, then $P A^{2}=P B \cdot P C$. For example, in the second figure below, $A C^{2}=A B \cdot B D$.
- Corollary If two secant lines intersect outside a circle at point P, one secant line intersecting the circle at points A and B and the other secant line intersecting the secant line at points C and D, then $P A \cdot P B=$ $P C \cdot P D$. For example, in the third figure below, $A B \cdot A C=A D \cdot A E$.
- Corollary If two chords $A B$ and $C D$ intersect in a circle at point P, then $P A \cdot P B=P C \cdot P D$. In other words, the product of the lengths of the segments of one chord is equal to the product of the lengths of the segments of the other chord. For example, in the fourth figure below, $B A \cdot B C=D A \cdot A E$.

Topic 4B: Circular Figures and Solids

The Area of a Circle

- Definition The area of a circle is the limit of the areas of the inscribed regular polygons. See figure.
- Theorem If the radius of a circle is r, its area is πr^{2}.

Sectors and Arcs

- Definition A sector of a circle is a region bounded by an arc of the circle and the two radii to the endpoints of the arc. (Like a slice of pizza.) See figure at far right.
- Theorem If r is the radius of a circle, then the area A of a sector of the circle with central angle (or intercepted arc) θ in degrees is given by $A=$ (fraction of circle) $\cdot($ area of circle $)=$ $\left(\frac{\theta}{360}\right)\left(\pi r^{2}\right)$. See figure at near right. If the central angle (or intercepted arc) θ is in radians, then $A=$ (fraction of circle). (area of circle) $=\left(\frac{\theta}{2 \pi}\right)\left(\pi r^{2}\right)$.

- Theorem If r is the radius of a circle, then the length l of a sector of the circle with central angle (or intercepted arc) θ in radians is given by $l=$ (portion of circle)(circumference of circle) $=\left(\frac{\theta}{2 \pi}\right)(2 \pi r)$. If the central angle (or intercepted arc) θ is in degrees, then $l=$ (portion of circle). (circumference of circle) $=\left(\frac{\theta}{360}\right)(2 \pi r)=\left(\frac{\pi}{180}\right) r \theta$. If the central angle (or intercepted arc) θ is in radians, then $l=($ fraction of circle $) \cdot($ circumference of circle $)=\left(\frac{\theta}{2 \pi}\right)(2 \pi r)=r \theta$.

Cones

- Definition a circular region is the union of a circle and its interior. In other words, a circular region is a "filled-in" circle. A circular region is sometimes called a disk.
- Definitions Suppose that A is a plane, R is a circular region in plane A, and P is a point not in plane A. The solid made up of all segments that connect P to a point of a region R is a cone. The circular region is called the base of the cone. The point P is called the apex of the cone. The curved surface is called the lateral surface of the cone. The line segment connecting the apex of the cone to the center of its base is called its axis. A cone is either right or oblique, depending on whether its axis is perpendicular or oblique to its base. See figures.

A right cone

An oblique cone

- Tip A cone is a solid, and it contains the circular region R, the lateral surface, and all the points "inside." If you were eating an ice cream cone, and you licked off the top ice cream so that the ice cream surface were flat across the top, then the rim of the cone would be the circle, the rim with the visible surface of the ice cream would be the circular region, the part you hold would be the lateral surface, and everything together (including the nonvisible ice cream inside) would be the cone.
- Theorem The volume of a cone is one-third the product of the area of its base and its altitude: $V=\frac{1}{3} B h=\frac{1}{3} \pi r^{2} h$. This applies to both right and oblique cones.

Topic 4B: Circular Figures and Solids

- Tip A cone is the circular counterpart to a pyramid. Use this to remember the volumes of each. The volume of a pyramid (with a polygon base) is $V=\frac{1}{3} B h$, and the volume of a cone is $V=\frac{1}{3} B h=\frac{1}{3} \pi r^{2} h$.
- Definition The height of a cone is the (perpendicular-to-the-plane) distance from the apex to the plane containing the base. Note that in a right cone, the height is the length of the axis.
- Definition The slant height of a right cone is the length of a segment from the apex to a point on the edge of the circular region that makes up the base. Note that slant height is not defined for oblique cones.
- Theorem The slant height of a right cone is the hypotenuse of the right triangle with legs radius of the base and height of the pyramid: $l=\sqrt{r^{2}+h^{2}}$
- Theorem The lateral surface area of a right cone is one-half the product of the perimeter of the base and the slant height: $L S A=\frac{1}{2} p l=\frac{1}{2}(2 \pi r) l=\pi r l=\pi r \sqrt{r^{2}+h^{2}}$.
- Theorem The surface area of a right cone is the sum of the area of its base and the area of its lateral surface: $S A=B+L S A=B+\frac{1}{2} p l=\pi r^{2}+\pi r l=\pi r^{2}+\pi r \sqrt{r^{2}+h^{2}}$. The "short" formula is $S A=$ $\pi r^{2}+\pi r l$.
- Tip A right cone is the circular counterpart to a pyramid. Use this to remember the surface area of each. The surface area of a pyramid (with a polygon base) is $S A=B+L S A=B+\frac{1}{2} p l$, and the surface area of a cone (with circular base) is $S A=B+L S A=B+\frac{1}{2} p l=\pi r^{2}+\pi r l=\pi r^{2}+\pi r \sqrt{r^{2}+h^{2}}$. The "short" formula is $S A=\pi r^{2}+\pi r l$, but it is helpful to understand where it comes from and how to determine l from r and h so that you may determine the surface area from the given information.

Cylinders

- Definition Suppose that A and B are two parallel planes, R is a circular region in one plane, and l is a line that intersects both planes but not R. The solid made up of all segments parallel to line l that connect a point of region R to a point of the other plane is a cylinder. Each of the two flat surfaces (each is a circular region) is a base of the cylinder. The curved surface is the lateral surface of the cylinder. The line segment connecting the centers of its basis is the axis of the cylinder. A cylinder is either right or oblique, depending on whether its axis is perpendicular or oblique to its base. See figures.

A right cylinder An oblique cylinder

- Theorem The volume of a cylinder is the product of the area of its base and its altitude: $V=B h=\pi r^{2} h$. See figure. Note this applies to both right and oblique cylinders.
- Tip A cylinder is the circular counterpart to a prism. Use this to remember the volumes of each. The volume of a prism (with polygon bases) is $V=B h$, and the volume of a cylinder is $V=B h=$
 $\pi r^{2} h$.
- Theorem The surface area of a cylinder is the sum of the areas of the bases and the lateral surface area: $S A=2 B+L S A=2 \pi r^{2}+p h=2 \pi r^{2}+2 \pi r h$. Note this applies to both right and oblique cylinders.
- Tip A cylinder is the circular counterpart to a prism. Use this to remember the surface areas of each. The volume of a prism (with polygon bases) is $V=B h$, and the volume of a cylinder is $V=B h=\pi r^{2} h$.

Math Team Notes

Topic 4B: Circular Figures and Solids

Spheres

- Definitions A sphere is the set of all points in space that are at a given distance from a given point. Note that this definition is like that of a circle except that the words "in space" replace "in a plane." As a result, words like center, radius, and diameter have the same meanings for spheres as they do for circles.
- Theorem The volume of a sphere is $\frac{4}{3} \pi$ times the cube of its radius: $V=\frac{4}{3} \pi r^{3}$.
- Theorem The surface area of a sphere is 4π times the square of its radius: $S A=4 \pi r^{2}$.
- Tip The expression for the volume of a sphere seems puzzling. Why $\frac{4}{3}$? The following explanation may help. The volume of a sphere of radius r is equal to the volume between a right circular cylinder with a base of radius r and a height $2 r$ minus two right cones with a base of radius r and a height of $r: V_{\text {cylinder }}$ $V_{t w o ~ c o n e s ~}=\pi r^{2}(2 r)-2\left[\frac{1}{3} \pi r^{2}(r)\right]=2 \pi r^{3}-\frac{2}{3} \pi r^{3}=\frac{4}{3} \pi r^{3}$. The derivation uses Cavalieri's Principle, whereby if for two solids every plane in a set of parallel planes intersects each solid such that the two resulting cross sections have equal areas, then the solids have equal volumes. For the solid to compare with the sphere, visualize two cones as being inside a cylinder, having the same bases as the cylinder and pointing inside, sharing a common apex halfway along the cylinder. See figure (from Geometry, $3^{\text {rd }}$ edition, by Harold R. Jacobs).

- Tip If you know calculus, you can determine one of the volume or surface area formulas from the other by knowing that surface area is the derivative of volume (and volume is the integral of surface area): $\frac{d}{d r}\left(\frac{4}{3} \pi r^{3}\right)=3\left(\frac{4}{3} \pi r^{3-1}\right)=4 \pi r^{2}$ and $\int 4 \pi r^{2} d r=\frac{1}{2+1}\left(4 \pi r^{2+1}\right)=\frac{4}{3} \pi r^{3}$. Note that the circumference and area of a circle are similarly related: $\frac{d}{d r}\left(\pi r^{2}\right)=2\left(\pi r^{2-1}\right)=2 \pi r$ and $\int 2 \pi r d r=\frac{1}{1+1}\left(2 \pi r^{1+1}\right)=$ πr^{2}.

Problems

For the following problems, assume a calculator is not allowed unless stated.

Problem \#1 ("quickie"; 1 point)

Goal: Know this topic so well that you can solve a Minnesota State High School Mathematics League (MSHSML) problem \#1 in less than one minute.

1. A 60° sector of a circle has area 24π. Determine exactly the radius of the circle. [calculator allowed] (MSHSML 2019-20 4B \#1)
2. In the figure, a quadrilateral is inscribed in a circle. Calculate the sum of the measures of angles x and y. [calculator allowed] (MSHSML 2018-19 4B \#1)

Math Team Notes

Topic 4B: Circular Figures and Solids

3. In the figure, in circle $B, \overline{E B}$ is perpendicular to diameter $\overline{A C}$ and $m \angle E F A=100^{\circ}$. Chord $\overline{A D}$ intersects $\overline{B E}$ at F. What is the measure of $\overparen{D C}$? [calculator allowed] (MSHSML 2017-18 4B \#1)

4. Determine exactly the radius of a circle in which the value of the circumference is one-third the value of its area. [calculator allowed] (MSHSML 2016-17 4B \#1)

Problem \#2 ("textbook"; 2 points)

Goal: Know this topic so well that you can solve an MSHSML problem \#2 in less than two minutes.

1. One circle has a circumference of 1 and a diameter whose length is a. Another circle has an area of 1 and a diameter whose length is \sqrt{b}. Determine exactly the value of $\frac{a}{b}$. [calculator allowed] (MSHSML 2019-20 4B \#2)
2. In the figure, a circle of radius 20 contains three points A, B, and C. Two chords, $\overline{A B}$ and $\overline{A C}$, are drawn. If the length of $\overparen{B C}$ is $\frac{5 \pi}{3}$, determine exactly the measure of $\angle B A C$. [calculator allowed] (MSHSML 2018-19 4B \#2)

3. In the figure, if the sum of the measures of $\overparen{A B}$ and $\overparen{D C}$ is 240° and $m \angle A B D=5 \cdot m \angle A$, what is the measure of $\overparen{B C}$? [calculator allowed] (MSHSML 2017-18 4B \#2)

4. In the figure, secant $\overline{C D}$ and tangent $\overline{C B}$ intersect circle A at points B and E. If $B C=10$ and $C E=5$, determine $D E$ exactly. [calculator allowed] (MSHSML 2016-17 4в \#2)

Problem \#3 ("textbook with a twist"; 2 points)

Goal: Know this topic so well that you can solve an MSHSML problem \#3 in less than three minutes.

1. In the figure, $\triangle M A T$ is inscribed in a circle as shown. The tangent line from M intersects $\overleftrightarrow{A T}$ at H. If $\overparen{A T}$ and $\angle A H M$ both have a measure of 36°, determine exactly the measure of $\angle A T M$ in degrees. [calculator allowed] (MSHSML 2019-20 4B \#3)

Math Team Notes

Topic 4B: Circular Figures and Solids

2. In the figure, a solid, formed by two right circular cones, one with a height twice the other but sharing the same base, is inscribed in a sphere of radius 12. Determine exactly the volume of the inscribed solid. [calculator allowed] (MSHSML 2018-19 4B \#3)

3. In the figure, $m \angle B=40^{\circ}, D$ is the midpoint of $\overparen{B C}$, and the measure of each of the minor arcs $\overparen{A E B}$ and $\overparen{B D C}$ is less than 180°. How many integer values for $m \angle A$ are possible? [calculator allowed] (MSHSML 2017-18 4B \#3)

4. In circle D, chord $\overline{F E}$ intersects the radius $D G$ at H, as shown in the figure. If $F H=$ 3, $H E=5$, and $H G=1$, determine $H D$ exactly. [calculator allowed] (MSHSML 2016-17 4B \#3)

Problem \#4 ("challenge"; 2 points)

Goal: Know this topic so well that you can solve an MSHSML problem \#4 in less than six minutes.

1. In the figure, $\overleftrightarrow{M X}$ is tangent to circle C_{1} at M and intersects circle C_{2} at N and O, and $\overleftrightarrow{P X}$ is tangent to circle C_{2} at R and intersects circle C_{1} at P and Q. If $M N=O X=1$ and $P Q=R X=2$, determine exactly $N O+Q R$. [calculator allowed] (MSHSML 2019-20 4B \#4)

2. The figure shows a cyclic quadrilateral $A B C D$, with perpendicular diagonals, $\overline{A C}$ and $\overline{B D}$, intersecting at point G. From G a segment is drawn perpendicular to $\overline{A B}$ at E and then extended to intersect $\overline{C D}$ at F. If $B E=2$, $C G=6$, and $E G=4$, determine exactly $C F$. [calculator allowed] (MSHSML 2018-19 4B \#4)

3. The figure shows two concentric circles centered at O and $\overline{P T}$ tangent to the larger circle at T. Center O is on $\overline{P D}$ and $\overline{P D}$ intersects the larger circle at A and D and the smaller circle at B and C as shown. If $P T=10, D C=4$, and $P A$ and $O B$ are integers, what is the length of $\overline{P A}$? [calculator allowed] (MSHSML 2017-18 4B \#4)

Math Team Notes

Topic 4B: Circular Figures and Solids

4. Triangle $C B D$ is drawn so that side $\overline{C B}$ runs through the center of circle $A, \overline{B D}$ is tangent to the circle at B, and $\overline{C D}$ intersects the circle at point E, as shown in the figure. If $A C=4$ and $B D=3$, determine $B E$ exactly. [calculator allowed] (MSHSML 2016-17 4B \#4)

When you are able to solve MSHSML problem \#s 1, 2 , and 3 , in less than 1,2 , and 3 minutes, respectively, you will have at least 6 minutes (assuming a 12-minute, 4-question exam) to solve problem \#4 ("challenge problem"; 2 points). Problem \#4 tends to be more varied in nature than problems \#1-3 and may require a broader knowledge of other mathematical areas (algebra, for example). For more MSHSML Meet 4 Event B problems, see past exams, which date back to 1980-81.

[^0]: ${ }^{1} \mathrm{~A}$ minor arc is also called a baby arc (doo-doo-doo-doo-doo-doo!). No, not really.

