
\qquad 1. Evaluate. Write your answer as a decimal.

$$
\frac{3}{10}+\frac{2}{100}+\frac{9}{1000}
$$

2. Which fraction has the largest value? Write the letter.
A. $\frac{3}{10}$
B. $\frac{99}{300}$
C. $\frac{5}{16}$
D. $\frac{101}{301}$
E. $\frac{8}{25}$
3. Every student at Friendship Middle School gets one piece of fruit with lunch. Of the students, one quarter take a banana, one half take an apple, one tenth take an orange, and the rest take a peach. What fraction of all the students at Friendship Middle School have a peach with lunch? Write your answer in lowest terms.
4. A new operation, \#, is defined as follows:
$p \# q=p^{2}+2 p q+q^{2}$
What is the value of (3 \# 2) \# 7?
5. In the equation, m and n are relatively prime positive integers.
$\frac{1}{2}+\frac{1}{4}=\frac{1}{3}+\frac{1}{5}+\frac{m}{n}$
What is $m+n$?

Meet 1 - Event A 2018-19

Answers

Questions are worth 2-2-2-4-4 points respectively.

0.329

1. $\frac{3}{10}+\frac{2}{100}+\frac{9}{1000}=0.3+0.02+0.009=\mathbf{0 . 3 2 9}$
\qquad 2. .
$\frac{3}{20}$
2. $\frac{1}{4} x+\frac{1}{2} x+\frac{1}{10} x=\frac{5}{20} x+\frac{10}{20} x+\frac{2}{20} x=\frac{17}{20} x ; \frac{20}{20}-\frac{17}{20}=\frac{3}{20}$

1,024
4. $3 \# 2=3^{2}+2(3)(2)+2^{2}=9+12+4=25$
$25 \# 7=25^{2}+2(25)(7)+7^{2}=625+350+49=1,024$

73
5. $\frac{30}{60}+\frac{15}{60}=\frac{20}{60}+\frac{12}{60}+\frac{m}{n}$

$$
\begin{aligned}
& \frac{45}{60}=\frac{32}{60}+\frac{m}{n} \\
& \frac{45}{60}=\frac{32}{60}+\frac{\mathbf{1 3}}{\mathbf{6 0}} ; 13+60=\mathbf{7 3}
\end{aligned}
$$

1. Evaluate: $5^{3}-4^{2}-3^{1}-2^{0}$
2. Which is the best estimate for the product of the following multiplication problem? Write the letter.

$$
2,999,999,999 \times 4,499,999,999
$$

A. 1.2×10^{18}
B. 1.2×101^{9}
C. 1.35×10^{18}
D. 1.35×10^{19}
E. 1.5×10^{18}
F. 1.5×10^{19}

mi
3. Sean starts riding his bike at 2 miles per hour and doubles his speed every half hour. Veronica starts riding her bike at 6 miles per hour and increases her speed by 2 miles per hour every half hour. How much farther has Veronica ridden than Sean after 2 hours?
4. In the diagram, segment $A D$ bisects angle $C A B$, and segment $B D$ bisects angle $A B C$. The measure of angle C is 50°. What is the measure of angle ADB?

\qquad
mi
5. Addison, Belleville, Coolidge, and Denton are four small towns along a straight road in that order. The distance from Belleville to Coolidge is $\frac{1}{5}$ the distance from Addison to Coolidge and $\frac{1}{3}$ the distance from Belleville to Denton. The distance from Belleville to Coolidge is 9 miles. How many miles is it from Addison to Denton?

Meet 1 - Event B

Answers

Questions are worth 2-2-2-4-4 points respectively.

\qquad
105

1. $125-16-3-1=105$
\qquad 2. $\left(3 \times 10^{9}\right) \times\left(4.5 \times 10^{9}\right)=13.5 \times 10^{18}=1.35 \times 10^{19}$

3 mi
3. $18-15=3$

	Sean		Veronica	
Time $(\mathbf{h r})$	Rate $(\mathbf{m p h})$	Distance $(\mathbf{m i})$	Rate $(\mathbf{m p h})$	Distance $(\mathbf{m i})$
$0-0.5$	2	1	6	3
$0.5-1$	4	2	8	4
$1-1.5$	8	4	10	5
$1.5-2$	16	8	12	6
Total		$\mathbf{1 5}$		$\mathbf{1 8}$

4. The angles in triangle ABC must add to 180°, so $50+2 x+2 y=180$. This means $2 x+2 y=130$. If "twice x plus twice y is 130 ", then $x+y=65$.
The angles in triangle ABD must also add to 180°, so the missing angle is $180-65=115^{\circ}$.
\qquad 5. $B C=1 / 5(A C)$
$B C=1 / 3(B D)$
$B C=9$
$9=1 / 5(A C) ; A C=45$ miles
$9=1 / 3(B D) ; B D=27$ miles

$$
A D=45+27-B C=45+27-9=63 \text { miles }
$$

\qquad 1. Evaluate. Write your answer as a reduced fraction.

$$
\frac{1}{3}+\frac{1}{9}+\frac{1}{27}
$$

2. Following only the paths and directions shown, how many different routes are there from Start to Finish in the diagram?

3. Shawna is custom-ordering a new bicycle. She can choose the type, gear, and color of the bike. For type, she can choose a mountain bike or a racing bike. For gear, she can choose 18 -speed, 21 -speed, or 24 -speed. For color, she can choose red, blue, green, or white. How many different custom bicycle configurations are possible for Shawna to choose?
$x=$
4. What value of x makes the equation true?

$$
3^{2} \cdot 3^{2} \cdot 3^{2} \cdot 3^{2}=\left(3^{2}\right)^{x}
$$

a.m.
5. Buses leave the terminal every 43 minutes starting at 5:05 a.m. You arrive at the terminal at 8:30 a.m. What time will the next bus leave?
6. It takes 6 cats 6 minutes to kill 6 rats. If there are 50 rats in a room, how many of these rats can 10 cats kill in 24 minutes?
7. What fraction represents $0 . \overline{5}+0 . \overline{32}$? Write your answer in lowest terms.
8. A group of 28 pennies is arranged into three piles such that each pile contains a different prime number of pennies. What is the greatest number of pennies possible in any one of the three piles?
units
9. A rectangle is inscribed into a quarter circle with dimensions as shown. What is the length of diagonal d ?
10. When written in standard form, how many digits are in
 the number $2^{9} \times 5^{7}$?

Meet 1 - Team Event 2018-19

Answers

Questions are worth 4 points each.

13
$\overline{27}$

1. $\frac{1}{3}+\frac{1}{9}+\frac{1}{27}=\frac{9}{27}+\frac{3}{27}+\frac{1}{27}=\frac{13}{27}$

5
2. Path 1: $R \rightarrow R \rightarrow D \rightarrow D$

Path 2: $\mathrm{R} \rightarrow \mathrm{D} \rightarrow \mathrm{R} \rightarrow \mathrm{D}$
Path 3: $D \rightarrow D \rightarrow R \rightarrow R$
Path 4: $R \rightarrow D \rightarrow D \rightarrow R$ Path 5: $R \rightarrow D \rightarrow L \rightarrow D \rightarrow R \rightarrow R$
\qquad 3. 2 types $\times 3$ gears $\times 4$ colors $=\mathbf{2 4}$ configurations
\qquad
$x=4$
4. $3^{2} \cdot 3^{2} \cdot 3^{2} \cdot 3^{2}=\left(3^{2}\right)^{4}$

8:40 a.m.
5. $5: 05+0: 43=5: 48 ; 5: 48+0: 43=6: 31 ; 6: 31+0: 43=7: 14$;
$7: 14+0: 43=7: 57 ; 7: 57+0: 43=8: 40$

40
6. 6 cats $\rightarrow 6$ rats $/ 6 \mathrm{~min}$, so1 cat $\rightarrow 1$ rat / 6 min , so 1 cat $\rightarrow 1 / 6 \mathrm{rat} / 1 \mathrm{~min}$, so 1 cat $\rightarrow 4$ rats $/ 24 \mathrm{~min}$, so10 cats $\rightarrow 40$ rats $/ 24 \mathrm{~min}$
$\frac{29}{33}$
7. $0 . \overline{5}+0 . \overline{32}=\frac{5}{9}+\frac{32}{99}=\frac{55}{99}+\frac{32}{99}=\frac{87}{99}=\frac{29}{33}$

23
8. $2+3+23=28$ pennies

10 units
9. $d=$ radius $=8+2=10$

\qquad 10. $2^{9}=\left(2^{3}\right)^{3}=8^{3}=512$
$5^{7}=5^{3} \times 5^{3} \times 5=125 \cdot 125 \cdot 5=78125$ $78125 \times 512=40,000,000$ (8 digits)

