Meet 1 – Event A

2018-19

Questions are worth 2-2-2-4-4 points respectively.

No calculators allowed

1. Evaluate. Write your answer as a decimal.

$$\frac{3}{10} + \frac{2}{100} + \frac{9}{1000}$$

- 2. Which fraction has the largest value? Write the letter.
 - **A.** $\frac{3}{10}$
- B. $\frac{99}{300}$ C. $\frac{5}{16}$

- **E.** $\frac{8}{25}$
- 3. Every student at Friendship Middle School gets one piece of fruit with lunch. Of the students, one quarter take a banana, one half take an apple, one tenth take an orange, and the rest take a peach. What fraction of all the students at Friendship Middle School have a peach with lunch? Write your answer in lowest terms.
- **4.** A new operation, #, is defined as follows: $p \# q = p^2 + 2pq + q^2$ What is the value of (3 # 2) # 7?

5. In the equation, *m* and *n* are relatively prime positive integers.

$$\frac{1}{2} + \frac{1}{4} = \frac{1}{3} + \frac{1}{5} + \frac{m}{n}$$

What is m + n?

Meet 1 – Event A

2018-19

Answers

Questions are worth 2-2-2-4-4 points respectively.

______1.
$$\frac{3}{10} + \frac{2}{100} + \frac{9}{1000} = 0.3 + 0.02 + 0.009 = 0.329$$

3.
$$\frac{3}{4}x + \frac{1}{2}x + \frac{1}{10}x = \frac{5}{20}x + \frac{10}{20}x + \frac{2}{20}x = \frac{17}{20}x$$
; $\frac{20}{20} - \frac{17}{20} = \frac{3}{20}$

1,024 4.
$$3 \# 2 = 3^2 + 2(3)(2) + 2^2 = 9 + 12 + 4 = 25$$

25 # 7 = 25² + 2(25)(7) + 7² = 625 + 350 + 49 = **1,024**

73 5.
$$\frac{30}{60} + \frac{15}{60} = \frac{20}{60} + \frac{12}{60} + \frac{m}{n}$$

 $\frac{45}{60} = \frac{32}{60} + \frac{m}{n}$
 $\frac{45}{60} = \frac{32}{60} + \frac{13}{60}$; $13 + 60 = 73$

Meet 1 – Event B

2018-19

Questions are worth 2-2-2-4-4 points respectively.

No calculators allowed

______**1.** Evaluate:
$$5^3 - 4^2 - 3^1 - 2^0$$

_____2. Which is the best estimate for the product of the following multiplication problem? Write the letter.

 $2,999,999,999 \times 4,499,999,999$

A.
$$1.2 \times 10^{18}$$

C.
$$1.35 \times 10^{18}$$

E.
$$1.5 \times 10^{18}$$

B.
$$1.2 \times 101^9$$

D.
$$1.35 \times 10^{19}$$

F.
$$1.5 \times 10^{19}$$

mi 3. Sean starts riding his bike at 2 miles per hour and doubles his speed every half hour. Veronica starts riding her bike at 6 miles per hour and increases her speed by 2 miles per hour every half hour.

How much farther has Veronica ridden than Sean after 2 hours?

- _4. In the diagram, segment AD bisects angle CAB, and segment BD bisects angle ABC. The measure of angle C is 50°. What is the measure of angle ADB?
- mi 5. Addison, Belleville, Coolidge, and Denton are four small towns along a straight road in that order. The distance from Belleville to Coolidge is $\frac{1}{5}$ the distance from Addison to Coolidge and $\frac{1}{3}$ the distance from Belleville to Denton. The distance from Belleville to Coolidge is 9 miles. How many miles is it from Addison to Denton?

Name

Schoo

Meet 1 – Event B

2018-19

Answers

Questions are worth 2-2-2-4-4 points respectively.

$$\underline{}$$
 105 125 - 16 - 3 - 1 = 105

D 2.
$$(3 \times 10^9) \times (4.5 \times 10^9) = 13.5 \times 10^{18} = 1.35 \times 10^{19}$$

	Sean		Veronica	
Time	Rate	Distance	Rate	Distance
(hr)	(mph)	(mi)	(mph)	(mi)
0 - 0.5	2	1	6	3
0.5 - 1	4	2	8	4
1 – 1.5	8	4	10	5
1.5 - 2	16	8	12	6
Total		15		18

63 mi 5. BC =
$$1/5$$
(AC)
BC = $1/3$ (BD)
BC = 9
9 = $1/5$ (AC); AC = 45 miles
9 = $1/3$ (BD); BD = 27 miles
AD = $45 + 27 - BC = 45 + 27 - 9 = 63$ miles

Meet 1 - Team Event 2018-19

Questions are worth 4 points each.

No calculators allowed

_____1. Evaluate. Write your answer as a reduced fraction.

$$\frac{1}{3} + \frac{1}{9} + \frac{1}{27}$$

_2. Following only the paths and directions shown, how many different routes are there from Start to Finish in the diagram?

- 3. Shawna is custom-ordering a new bicycle. She can choose the type, gear, and color of the bike. For type, she can choose a mountain bike or a racing bike. For gear, she can choose 18-speed, 21-speed, or 24-speed. For color, she can choose red, blue, green, or white. How many different custom bicycle configurations are possible for Shawna to choose?
- <u>a.m.</u> **5.** Buses leave the terminal every 43 minutes starting at 5:05 a.m. You arrive at the terminal at 8:30 a.m. What time will the next bus leave?
- ______6. It takes 6 cats 6 minutes to kill 6 rats. If there are 50 rats in a room, how many of these rats can 10 cats kill in 24 minutes?
- **7.** What fraction represents $0.\overline{5} + 0.\overline{32}$? Write your answer in lowest terms.
- **8.** A group of 28 pennies is arranged into three piles such that each pile contains a different prime number of pennies. What is the greatest number of pennies possible in any one of the three piles?
- units 9. A rectangle is inscribed into a quarter circle with dimensions as shown. What is the length of diagonal d?
- 8 2

______**10.** When written in standard form, how many digits are in the number $2^9 \times 5^7$?

Meet 1 – Team Event 2018-19

Answers

Questions are worth 4 points each.

_____5 ___2. Path 1:
$$R \rightarrow R \rightarrow D \rightarrow D$$
 Path 2: $R \rightarrow D \rightarrow R \rightarrow D$
Path 3: $D \rightarrow D \rightarrow R \rightarrow R$ Path 4: $R \rightarrow D \rightarrow D \rightarrow R$
Path 5: $R \rightarrow D \rightarrow L \rightarrow D \rightarrow R \rightarrow R$

24 3. 2 types
$$\times$$
 3 gears \times 4 colors = **24** configurations

$$x = 4$$
 4. $3^2 \cdot 3^2 \cdot 3^2 \cdot 3^2 = (3^2)^4$

40 6. 6 cats
$$\rightarrow$$
 6 rats / 6 min, so 1 cat \rightarrow 1 rat / 6 min, so 1 cat \rightarrow 1/6 rat / 1 min, so 1 cat \rightarrow 4 rats / 24 min, so 10 cats \rightarrow 40 rats / 24 min

7.
$$0.\overline{5} + 0.\overline{32} = \frac{5}{9} + \frac{32}{99} = \frac{55}{99} + \frac{32}{99} = \frac{87}{99} = \frac{29}{33}$$

10 units **9.**
$$d = \text{radius} = 8 + 2 = 10$$

_____8 ____10.
$$2^9 = (2^3)^3 = 8^3 = 512$$

 $5^7 = 5^3 \times 5^3 \times 5 = 125 \cdot 125 \cdot 5 = 78125$
 $78125 \times 512 = 40,000,000$ (8 digits)