Math Team Meet 1 Events A and B Problems 1-2 2014-16 Practice

Event A

Problem #1 ("quickie"; 1 point)

Try to solve each problem within one minute.

1. Determine exactly how many Turkish lira 1 dollar will buy if a hotel room that costs \$54 may be obtained for 81

Turkish lira. [calculator allowed] (Based on MSHSML 2015-16 1A #1)

1. If $x = \frac{1}{2}$, $y = \frac{1}{3}$, and $z = \frac{1}{4}$, determine exactly the value of $\frac{x}{y+z}$. (MSHSML 2014-15 1A #1)

Problem #2 ("textbook"; 2 points)

Try to solve each problem within two minutes.

2. Determine the exact value of $\frac{0.\overline{7}}{0.\overline{63}}$. [calculator allowed] (MSHSML 2015-16 1A #2)

2. Express 0.037037037... as a fraction $\frac{p}{q}$, where p and q are relatively prime integers. (MSHSML 2014-15 1A #2)

Math Team Meet 1 Events A and B Problems 1-2 2014-16 Practice

Event B

Problem #1 ("quickie"; 1 point)

Try to solve each problem within one minute.

1. In Figure 1, if \triangle ABC is equilateral, and \overline{CD} is parallel to \overline{AB} , calculate the measure of $\angle BCD$. [calculator allowed] (MSHSML 2015-16 1B #1)

1. In \triangle ABC, $m \angle A = 45^{\circ}$ and $m \angle B = 30^{\circ}$ as shown in Figure 1. If BC = 12, determine exactly the length AC. [calculator allowed] (MSHSML 2014-15 1B #1)

Math Team Meet 1 Events A and B Problems 1-2 2014-16 Practice

Problem #2 ("textbook"; 2 points)

Try to solve each problem within two minutes.

2. Town A is located exactly 120 miles north of town B. If Sue hops in a car and drives directly east from town B at 50 mph, calculate how many hours (as a decimal) it will take for Sue to be exactly 241 miles from town A as the crow flies. [calculator allowed] (MSHSML 2015-16 1B #2)

2. In Figure 2, lines l_1 and l_2 are parallel, while lines l_3 and l_4 intersect at an angle of 17°. If the acute angle formed by l_1 and l_4 measures 44°, calculate the measure of the obtuse angle between l_1 and l_3 . [calculator allowed] (MSHSML 2014-15 1B #2)

