Math Team Meet 1 Events A and B Problems 3 2018-20 Practice

Event A

<u>Problem #3 ("textbook with a twist"; 2 points)</u> Try to solve each problem within three minutes.

3. Express $0.20\overline{18}$ as a quotient of two relatively prime

integers. (MSHSML 2019-20 1A #3)

3. Express $0.20\overline{19}$ as a quotient of two relatively prime

integers. (MSHSML 2018-19 1A #3)

3. What is the base b for which <u>6</u> <u>8</u> $_b$ is 25% larger than <u>5</u> <u>3</u> $_b$? (Note that the percent is given in base 10.) (MSHSML 2017-18 1A #3)

3. If 48 and x have a lowest common multiple of 2640 and a greatest common factor of 12, determine the minimum possible value of x. (MSHSML 2016-17 1A #3)

Math Team Meet 1 Events A and B Problems 3 2018-20 Practice

Event B

Problem #3 ("textbook with a twist"; 2 points) Try to solve each problem within three minutes.

3. The interior angles of a convex polygon increase in the following linear progression: 100°, 108°, 116°, Determine the number of sides of the polygon. [calculator allowed] (MSHSML 2019-20 1B #3)

3. Determine exactly both real numbers x such that $\sqrt{x+2}$, $\sqrt{3x-2}$, and $\sqrt{6x-5}$ are the side lengths of a right triangle. Express answers as quotients of relatively prime integers. [calculator allowed] (MSHSML 2018-19 1B #3)

Math Team Meet 1 Events A and B Problems 3 2018-20 Practice

3. In *Figure 3*, $\triangle ABC$ is an isosceles right ^A triangle with hypotenuse \overline{AC} . $\overline{BD} \perp \overline{AF}$, $\overline{DE} \perp \overline{BC}$, and $m \angle ABD = 60^{\circ}$. If $AF = 5\sqrt{6}$, determine exactly the length of \overline{CE} . B (MSHSML 2017-18 1B #3)

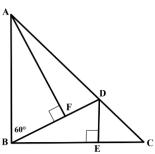


Figure 3

3. Given $\angle 1 + m\angle 2 + m\angle 3 + m\angle 4 =$ *y*, as shown in *Figure 3*. Find the <u>smallest</u> possible angle *y* (in degrees) if *x* is an obtuse angle with an integer measure. [calculator allowed] (MSHSML 2016-17 1B #3)