Event A
Problem \#3 ("textbook with a twist"; 2 points)
Try to solve each problem within three minutes.
3. Express $0.20 \overline{18}$ as a quotient of two relatively prime integers. (mshsml 2019-20 1A \#3)
3. Express $0.20 \overline{19}$ as a quotient of two relatively prime integers. (MSHSML 2018-19 1A \#3)
3. What is the base b for which $\underline{6} \underline{8} b$ is 25% larger than $\underline{5} \underline{3} b$? (Note that the percent is given in base 10.) (mshsmL 2017-18 1A \#3)
3. If 48 and x have a lowest common multiple of 2640 and a greatest common factor of 12 , determine the minimum possible value of x. (мsHsml 2016-17 1А \#3)

Event B
Problem \#3 ("textbook with a twist"; 2 points)
Try to solve each problem within three minutes.
3. The interior angles of a convex polygon increase in the following linear progression: $100^{\circ}, 108^{\circ}, 116^{\circ}$, Determine the number of sides of the polygon. [calculator allowed] (MshsmL 2019-20 1B \#3)
3. Determine exactly both real numbers x such that $\sqrt{x+2}$, $\sqrt{3 x-2}$, and $\sqrt{6 x-5}$ are the side lengths of a right triangle. Express answers as quotients of relatively prime integers. [calculator allowed] (MSHSML 2018-19 1B \#3)

Meet 1 Events A and B Problems 3 2018-20 Practice
3. In Figure 3, $\triangle A B C$ is an isosceles right triangle with hypotenuse $\overline{A C} . \overline{B D} \perp \overline{A F}$, $\overline{D E} \perp \overline{B C}$, and $m \angle A B D=60^{\circ}$. If $A F=$ $5 \sqrt{6}$, determine exactly the length of $\overline{C E}$. (MSHSML 2017-18 1B \#3)

Figure 3
3. Given $\angle 1+m \angle 2+m \angle 3+m \angle 4=$ y, as shown in Figure 3. Find the smallest possible angle y (in degrees) if x is an obtuse angle with
 an integer measure. [calculator allowed] (MSHSML 2016-17 18 \#3)

