Event C
Problem \#3 ("Textbook with a twist"; 2 points)
Try to solve each problem within three minutes.
3. $\triangle A B C$ has a right angle at B. If $B C=1$ and $\cos A=\frac{1}{3}$, determine exactly the perimeter of the triangle. (MSHSML 201920 1C \#3)
3. In the figure, $A B=2, B C=5$, and $C D=8$. Angles A and D are acute and angles B and C are
 obtuse. If $\sin C=\frac{3}{5}$ and $\cos B=$
$-\frac{3}{5}$, determine exactly $A D$. (MSHSML 2018-19 1c\#3)
3. Determine exactly the value of $\sin 30^{\circ}+\sin 60^{\circ}+$ $\sin 90^{\circ}+\cdots+\sin 300^{\circ}$. (mSHSML 2017-18 1C \#3)
3. If $\sin ^{2} A=\frac{9}{16}$ and A is in the second quadrant, determine exactly the value of $\tan A$. (MSHSML 2016-17 1c \#4)

Event D

Problem \#3 ("Textbook with a twist"; 2 points)
Try to solve each problem within three minutes.
3. $f(x)=a x^{2}$ with $a>0$. An equilateral triangle with side length k is placed on the parabola so that one of its vertices is on the vertex of the parabola and the other two vertices are on $f(x)$. Write a formula for a, the leading coefficient of $f(x)$, in terms of k. (Be sure to simplify). [calculator allowed] (MSHSML 2019-20 1D \#3)
3. The function $f(x)=x^{3}+b x^{2}+c x+52$ has $\frac{13}{2-3 i}$ as one of its zeros. Determine exactly the ordered pair (b, c). (MSHSML 2018-19 1D \#3)

3. For what values of p will the quadratic function $f(x)=$

 $x^{2}-4 p x-9$ have a minimum value of -333 ? (MSHSML 201718 1D \#3)3. Determine exactly all values of k for which the polynomials $x^{2}+2 x-5 k$ and $x^{2}-10 x-k$ share a common zero. (MSHSML 2016-17 1D \#3)
