Event A

Problem \#1 ("quickie"; 1 point)
Try to solve each problem within one minute.

1. Find the sum of the two solutions to this absolute value equation: $|2 x+1|=9$. [calculator allowed] (MSHSML 2019-20 2A \#1)
2. Sal earns $\$ 30.00$ for a day's work but also receives a commission of 5% on all the merchandise she sells. If she earned $\$ 120.00$ yesterday, how much merchandise did she sell? [calculator allowed] (MSHSML 2018-19 2A \#1)
3. I have nickels, dimes, and quarters in my pocket. The total of this change is $\$ 3.90$. I have twice as many nickels as dimes and half as many quarters as one of the other coins. How many dimes do I have? [calculator allowed] (MSHSML 2019-20 2A \#2)
4. The figure below is a portion of a highway wall as seen from above. The vertical sections are each 1 meter wide, the upper horizontal sections are each 3 meters wide, and the lower horizontal sections are 2 meters wide. If the length of the wall, i.e., the straight-line distance from A to B is 2018 meters, how many total sections are there in the Wall? [calculator allowed] (MSHSML 2018-19 2A \#2)

Event B
Problem \#1 ("quickie"; 1 point)
Try to solve each problem within one minute.

1. When the height of a triangle is quadrupled (made four times larger), its area increased by 2019. What is the area of the original triangle? [calculator allowed] (MSHSML 2019-20 2B \#1)
2. In $\triangle A B C$ at the right, $A C=9$ and $B C=5$. Segments $\overline{B E}, \overline{C D}$, and $\overline{A F}$ are concurrent at G. If $B F=2, C E=4$, and $A D=6$, determine exactly $D B$. [calculator allowed] (MSHSML 201819 2B \#1)

Problem \#2 ("textbook"; 2 points)
Try to solve each problem within two minutes.
2. In $\triangle A B C, A B=13, B C=4$, and $C A=15$. Cevian $\overline{A D}$ is drawn such that $C D=1$. Determine exactly $[A D C] .{ }^{1}$
[calculator allowed] (MSHSML 2019-20 2B \#2)
2. What is the area of a triangle with side lengths 25,25 , and 48 ? [calculator allowed] (MSHSML 2018-19 2B \#2)

[^0]
[^0]: ${ }^{1}$ The notation $[A B C]$ indicates the area of the polygon (a triangle, in this example) $A B C$.

