Event C

Problem \#1 ("Quickie"; 1 point)
Try to solve each problem within one minute.

1. If $\frac{\pi}{2}<B<\pi$ and $\sin B=\frac{5}{13}$, determine exactly $\sin (2 B)$. (MSHSML 2019-20 2C \#1)
2. Determine exactly the smallest possible positive degree measure for θ, given that $\tan 9 \theta=1$. (MsHsml 2018-19 2c \#1)

Problem \#2 ("Textbook"; 2 points)
Try to solve each problem within two minutes.
2. If $\pi<A<\frac{3 \pi}{2}$ and $\sin A=-\frac{7}{25^{\prime}}$, determine exactly $\cos \frac{A}{2}$. (MSHSML 2019-20 2C \#2)
2. Determine exactly the value of $\tan \frac{5 \pi}{12}$. (MSHSML 2018-19 2c\#2)

Event D

Problem \#1 ("Quickie"; 1 point)
Try to solve each problem within one minute.

1. Determine exactly the point of intersection of the line defined by $f(x)=\frac{3 x+2}{6}$ and the line defined by $f^{-1}(x)$. [calculator allowed] (MSHSML 2019-20 2D \#1)
2. Calculate the slope of the line $8 x+11 y-13=0$. [calculator allowed] (MSHSML 2018-19 2D \#1)
3. Let l_{1} be the line $5 x-4 y=9$ and l_{2} be the line $10 x-$ $A y=2$, where A is a constant. There is one value for A such that $l_{1} \| l_{2}$ and another value for A such that $l_{1} \perp l_{2}$. Determine exactly the product of these two values of A. [calculator allowed] (MSHSML 2019-20 2D \#2)
4. Determine exactly, in the form $A x+B y=C$, the equation of the line with a negative slope that contains the center and the y-intercept of the circle $(x-4)^{2}+$ $(y-5)^{2}=65$. [calculator allowed] (MSHSML 2018-19 20 \#2)
