Event A

Problem \#1 ("quickie"; 1 point)

Try to solve each problem within one minute.

1. If $x+2 y=9$ and $2 x+y=12$, what is the value of $x-$ $y ?$ [calculator allowed] (MSHSML 2017-18 3A \#1)

1. Determine exactly the area of the region in the first quadrant bounded by $\frac{x}{4}+\frac{y}{10}=1$. [calculator allowed] (MSHSML 2016-17 3A \#1)

Event A

Problem \#2 ("textbook"; 2 points)
Try to solve each problem within two minutes.
2. If the following three lines intersect at a single point, what is the value of $b-a$? [calculator allowed] (MSHSML 2017-18 3A \#2)
$2 x+y=1$
$3 x-y=4$
$a x+b y=7$
2. Given $\left|\begin{array}{ll}2 & 9 \\ 3 & b\end{array}\right|=2$, determine exactly $\left|\begin{array}{ll}9 & 2 \\ b & 3\end{array}\right|$.[calculator allowed] (MSHSML 2016-17 3A \#2)

Event B

Problem \#1 ("quickie"; 1 point)

Try to solve each problem within one minute.

1. The diagonals of a rhombus are 6 and 8 . Calculate the area of the rhombus. [calculator allowed] (MSHSML 2017-18 38 \#1)

1. Determine exactly the surface area of a sphere whose volume is 36π. [calculator allowed] (MSHSML 2016-17 38 \#1)

Event B

Problem \#2 ("textbook"; 2 points)
Try to solve each problem within two minutes.
2. Determine exactly the area of an equilateral triangle if its circumscribed circle has a radius of 10. [calculator allowed] (MSHSML 2017-18 3B \#2)
2. When the side lengths of a cube are all increased by 1 , the surface area increases by 90 . Calculate the volume of the original cube. [calculator allowed] (MSHSML 2016-17 38 \#2)

