Math Team

Meet 3 Events C and D Problems #1-2 Practice 2018-19 and 2019-20

Event C

Problem #1 ("Quickie"; 1 point)

Try to solve each problem within one minute.

1. If
$$\sin^{-1}\left(\frac{1}{3}\right)=\theta$$
, determine exactly the value of $\cos(2\theta)$. (MSHSML 2019-20 3C #1)

1. z=1+6i. $w=z\cdot \bar{z}$, where \bar{z} is the conjugate of z. Determine exactly the value of w. (MSHSML 2018-19 3C #1)

Event C

Problem #2 ("Textbook"; 2 points)

Try to solve each problem within two minutes.

2. In Figure 2, a hill rises at a constant angle of 23° from the horizontal. At the top of the hill stands a vertical flag pole that is 80 feet tall. A guy wire runs from the top of the flag

Figure 2

pole to a point P down the hill. At P the guy wire makes a 30° angle with the hill. The length of the guy wire can ve written as $k \sin \theta$ for <u>acute</u> angle θ . Determine exactly the ordered pair (k, θ) . (MSHSML 2019-20 3C #2)

2. If $z=\mathrm{cis}(30^\circ)$, determine exactly the value of $z^3+\frac{1}{z^3}$. $(z=r\cos(\theta)\text{ is shorthand notation for the complex number }r\cos\theta+r\sin\theta\text{ }i.)$ (MSHSML 2018-19 3C #2)

Math Team

Meet 3 Events C and D Problems #1-2 Practice 2018-19 and 2019-20

Event D

Problem #1 ("Quickie"; 1 point)

Try to solve each problem within one minute.

1. Determine exactly the value of $\log_3 15 + \log_3 81 - \log_3 5$. (MSHSML 2019-20 3D #1)

1. Determine exactly the value of $\left(\frac{1}{64}\right)^{-\frac{1}{1}} + \left(\frac{1}{64}\right)^{-\frac{1}{2}} + \left(\frac{1}{64}\right)^{-\frac{1}{3}} + \left(\frac{1}{64}\right)^{-\frac{1}{6}}$. (MSHSML 2018-19 3D #1)

Math Team Meet 3 Events C and D Problems #1-2 Practice 2018-19 and 2019-20

Event D

Problem #2 ("Textbook"; 2 points)

Try to solve each problem within two minutes.

2. The solutions to the equation $2(\log x)^2$ are 10^m and 10^n . Determine exactly the product mn. (MSHSML 2019-20 3D #2)

2. Determine exactly the value of $\log_{12} 24 + \log_{12} 72$. (MSHSML 2018-19 3D #2)