Event C

Problem \#1 ("Quickie"; 1 point)
Try to solve each problem within one minute.

1. If $\sin ^{-1}\left(\frac{1}{3}\right)=\theta$, determine exactly the value of $\cos (2 \theta)$. (MSHSML 2019-20 3c \#1)

1. $z=1+6 i . w=z \cdot \bar{z}$, where \bar{z} is the conjugate of z. Determine exactly the value of w. (MSHSML 2018-19 зс \#1)

Event C

Problem \#2 ("Textbook"; 2 points)
Try to solve each problem within two minutes.
2. In Figure 2, a hill rises at a constant angle of 23° from the horizontal. At the top of the hill stands a vertical flag pole that is 80 feet tall. A guy wire runs from the top of the flag

Figure 2 pole to a point P down the hill. At P the guy wire makes a 30° angle with the hill. The length of the guy wire can ve written as $k \sin \theta$ for acute angle θ. Determine exactly the ordered pair (k, θ). (MSHSML 2019-20 3c \#2)
2. If $z=\operatorname{cis}\left(30^{\circ}\right)$, determine exactly the value of $z^{3}+\frac{1}{z^{3}}$. ($z=r \cos (\theta)$ is shorthand notation for the complex number $r \cos \theta+r \sin \theta i$.) (MSHSML 2018-19 зС \#2)

Event D

Problem \#1 ("Quickie"; 1 point)
Try to solve each problem within one minute.

1. Determine exactly the value of $\log _{3} 15+\log _{3} 81-$ $\log _{3}$ 5. (MsHsmL 2019-20 3D \#1)
2. Determine exactly the value of $\left(\frac{1}{64}\right)^{-\frac{1}{1}}+\left(\frac{1}{64}\right)^{-\frac{1}{2}}+$ $\left(\frac{1}{64}\right)^{-\frac{1}{3}}+\left(\frac{1}{64}\right)^{-\frac{1}{6}} \cdot$ (MSHSML 2018-19 3D \#1)

Event D

Problem \#2 ("Textbook"; 2 points)

Try to solve each problem within two minutes.
2. The solutions to the equation $2(\log x)^{2}$ are 10^{m} and 10^{n}. Determine exactly the product $m n$. (MSHSML 2019-20 3D \#2)
2. Determine exactly the value of $\log _{12} 24+\log _{12} 72$. (MSHSML 2018-19 3D \#2)

