Event A

Problem \#3 ("textbook with a twist"; 2 points)
Try to solve each problem within three minutes.
3. Compute the smallest possible integer value for $b>2$, such that $\sqrt{0.12_{b}}$ is a rational number in base 10. (MSHSML 201920 6A \#3)

Event A

Problem \#3 ("textbook with a twist"; 2 points)
Try to solve each problem within three minutes.
3. Determine exactly the ordered quadruple (w, x, y, z) which satisfies this system:

$$
2 w+x+y+z=5
$$

$w+2 x+y+z=10$
$w+x+2 y+z=20$
$w+x+y+2 z=40$
(MSHSML 2018-19 6A \#3)

Event B
Problem \#3 ("textbook with a twist"; 2 points)
Try to solve each problem within three minutes.
3. In the figure, concave quadrilateral $A B C D$ is concave at D. Interior angles A, B, and C are congruent and $m \angle D=225^{\circ}$. If $B D=6$, determine exactly the area of quadrilateral $A B C D$. (Figure not drawn to scale.) (MsHsml 2019-20 6B \#3)

Event B
Problem \#3 ("textbook with a twist"; 2 points)
Try to solve each problem within three minutes.
3. Right triangle $A B C$ has legs $\overline{A B}$ and $\overline{B C}$ of lengths 20 and 21, respectively. M is the midpoint of $\overline{A B}$ and N is the trisection point of $\overline{B C}$ closest to C. If $\overline{A N}$ and $\overline{C M}$ intersect at O and ray $\overrightarrow{B O}$ intersects $\overline{A C}$ at P, determine exactly the area of $\triangle A B P$. (msHsmL 2018-19 6B \#3)

