Chapter 5

Using the Integers

In spite of their being a rather restricted class of numbers, the integers have a lot of interesting
properties and uses. Math which involves the properties of integers is called number theory.

5.1 Divisibility

An integer n is divisible by an integer m if 11 is an integral multiple of m. For example, 15 is divisible
by 3 because 15 = 5-3. The numbers which divide a given integer are called its divisors; for example,
the divisors of 12 are 1, 2, 3, 4, 6, and 12 (which divides itself because 12 = 12-1).

EXERCISE 5-1 Write down all the divisors of 20.

Primes are integers which have no divisors except themselves and 1. For example, 7 is a prime,
but 8 is not because 2 and 4 divide 8. Numbers like 8 which do have divisors other than 1 and
themselves are called composite.

WARNING: 1 is NOT considered prime! Unfortunately, it is not composite either. (The reasons
for this are too complicated to get into now.) The primes less than 10 are thus 2, 3, 5, and 7.

EXERCISE 5-2 Write down all primes between 11 and 20 inclusive.
EXERCISE 5-3 How many even primes are there?

The notation for one number dividing another is to put a vertical line between them, as in 13|26
and 12/24. To indicate that the first number does not divide the second, we put a slash through the
line: 11/f23.

5.2 Number Bases

We can write the integer 7965841 as

7000000 + 900000 + 60000 + 5000 + 800 + 40 + 1.
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That we can write it this way is a consequence of the fact that our usual number system is base 10,
meaning we have 10 digits. Each digit represents a multiple of a power of 10, based on its position.
To make this clearer we could write

7x100+9%x10°+6x10* +5x10° + 8x 10% + 4 x 10 + 1 x 10°.

Why do we count the way we do, following the number 9 with a new number consisting of a 1
and a 0? Having used 10 digits (0 through 9) to count to 9, we make a new “tens place,” and assume
that the digit in that position is the number of tens. For example, 57 is 5 tens and 7 ones. This saves
us from needing a new digit for each number; we can stick to our original ten digits. When we get
up to 99, we need to add another place, making the next position represent the number of hundreds.

Humans use 10 digits because we have ten fingers. However, what if we were cartoon characters,
with only 8 fingers? Then we might only use the eight digits 0, 1, ..., 7. To go higher than 7, we
would create an “eights place,” so that 25 in our new number system would represent two 8’s and
five1’s, or 2(8) + 5 = 21 in the base ten system. Higher positions would correspond to higher powers
of 8; for example, 6543 means 6 X 8° + 5 x 8% + 4 x 8 + 3. To get rid of the confusion of going back
and forth between the two bases, we use the notation that 47,7 means the base 10 number 47 and 47g
means the base 8 number 47. (What is this in base 107) This notation carries over into other bases as
well.

EXAMPLE 5-1 What is the base 7 number 34567 in base 10?
Solution: All we have to do is write

3XP+4AX72P+5%x 7 +6x 70 = 3(343) + 4(49) + 5(7) + 6(1) = 1266.

EXAMPLE 5-2 Write the base 10 number 216 in base 4.

Solution: The first few powers of 4 are 1, 4, 16, 64, 256, ... Clearly we can’t use 256 or
any greater power. The highest power which is less than 216 is 64 = 43 The multiples of 64 are 64,
128, and 192; since 192 = 64 x 3 is still less than 216, the first digit is 3. Why don’t we just use 2 64's?
If so we would need more than 3 16’s, but we are only allowed 3 nonzero digits to represent the
number of 16’s. Try it and see! To find the second digit, we look at what is left once we have taken
out three 64’s, or 216 - 192 = 24,

In general, to find how many times one number goes into another, we can divide the first by the
second and throw out the remainder. Doing this with 24 and 16, the quotient is 1.5, so only one 16 is
needed (two 16’s are too many), and the second digitis 1. We subtract this 16 from what is left, to get

24 - 16 = 8. Dividing this by 4! = 4, the quotient is 2, so the third digit is 2. Subtracting 8 =2 - 4, we

get zero, so the remaining digit is zero since we don't need any 1’s. The number in base 4 is 31204.

EXERCISE 54 Find the base 10 representations of 47g, 479, and 471,.

EXERCISE 5-5 Find the base §, 9, and 16 representations of 471;.
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The presence of base 16 in the previous exercises raises a new question: what if we want to use
a base greater than 10? We will need more digits than the usual 10, so all we do is use some other
symbols. The most common such case is base 16, or hexadecimal (six-plus-ten-imal). Here we use
the digits
0,1,23,456,7,89 A B CD,EFE

Thus A = 1019 and Fy5 = 1519. If we had a high enough base we might have to start using smiley
faces and triangles for digits, but there would be little use for such a system.

EXERCISE 5-6 Find the base 10 equivalents of BEEg, DEF15, and Alyg.

At the opposite extreme from all these digits is the lowly base 2, or binary. Here the only two
digits are 0 and 1, and counting looks like 1, 10, 11, 100, 101, 110, . ..

EXERCISE 5-7 How do you multiply a number by 2 in base 2?

EXERCISE 5-8 Do some conversions into and out of binary.

EXAMPLE 5-3 Perform the addition 1001110, + 11001101, without converting the two numbers to
decimal. Check your answer by converting to decimal, adding, and converting back.

Solution: We can do the addition just like ordinary base 10 addition, writing the numbers

one above the other like so:
1

0 01110
1 10031 1 4 1

If two 0's are in a column, a zero goes in the result in the same column. If a 1 and a 0 are in a column,
a 1 goes below. If two 1's are together, the sum is 2, which in binary is 10;. Thus we must carry
the 1, and put a 0 below. The ‘carrying’ process works in base 2 just like in base 10. (Compare this
process to adding 56 and 65 in base 10.) This carried 1 will add to the numbers in the next column,
making 1 if both are 0, 2 (or 10,) with a 1 and a 0, and 3 (or 112) with two 1’s. For the latter two we
will have to carry another 1, and so on. Using these rules we can fill in the digits of the result from
right to left, as usual:

1 1 1 1
10 01 110
i 1 00 1 1 @ 1
1 00011 01 1

We’ve placed the carried digits above the columns they're carried to. The result is 100011011, =
256 + 16 + 8 + 2 + 1 = 283;9. To confirm this we convert the original numbers to decimal, getting
1001110, = 64+ 8 +4 + 2 = 78yp and 11001101, = 128 + 64 + 8 + 4 + 1 = 2051y, and note that
20510 + 7819 = 2834¢, as desired.

We have seen that the operation of carrying works in binary. This procedure works in any base.
Say we are adding the base 7 numbers 235; and 1147. When we add the two rightmost digits we get
9 = 127, so we place a 2 below the line and carry the 1.
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5.3 The Last Digit

No matter what number base we are using, often the most important digit of a number is the last
digit. Why should the last digit be so important? There is a very simple reason: if we want to know
the last digit of the sum or product of two numbers, all we have to do is find the sum or product of
their last digits and take the last digit of that result.

EXERCISE 5-9 Convince yourself that the previous statement is true. Find the last digits of 34 - 17
and 34 +17, first by actually doing the multiplication and addition, then by taking the last digits and
just multiplying or adding those. Explain why this works.

The method of the last digit works in any number base and can be used to prove some very
useful facts.

EXERCISE 5-10 In base 10, what digits can the last digit of the square of an integer not be?

EXAMPLE 5-4 Find the units digit of 7% + 427,

Solution: To find the last digit of 74> + 427, we find the last digit of each of the two quanti-
ties in the sum. To find the last digit of 742, we break it up into a product of 7's. Since 7% = 49, 72 ends
in 9. Since 7* = 72 - 72, it ends in the same number as 9- 9 ends in, or 1. Now we write 7% = (74)10. 72,
Since 7* ends in 1, the last digit of (74)! is the same as the last digit of the product of ten 1’s, or 1.
Finally, since (74)1° ends in 1 and 72 ends in 9, 7** ends in1-9 = 9.

In finding the last digit of 427, the tens digit is irrelevant because it does not contribute to the
units digit of the product. Hence we are only concerned with 27. Since this is 128, the last digit of 427
is 8. (Make sure you see why the last digit of 427 is the same as that of 27.) Completing our problem,
742 + 427 ends in the same digit as 9 + 8, or 7.

5.4 Modular Arithmetic

Imagine we decide to do all arithmetic in base 5. Doing arithmetic in different number bases is not
always easy; for example, you don’t want to memorize a multiplication table for base 16. (B-C = 847?!)
So just to make it easier on ourselves, we will consider only the last digits. All numbers which have
the same last digit in base 5 will be considered equal:

In base 10, this looks like
2=7=12=17=---

The usual way to show that we are using this system is to replace the = with a =, and also append
the suffix (mod 5). We thus write, for example, 12 = 7 (mod 5). We say that 12 is congruent to 7 mod
5.

Another way to look at mods is that2, 7,12, 17, etc. all have the same remainder (2) when divided
by 5. This method of viewing modular arithmetic makes actual computation much easier. Itis often
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useful to find the smallest nonnegative integer which is congruent to x mod y. (For example, the
smallest integer congruent to 12 mod 5 is 2.) When we perform this task, we say that we ‘mod out’
the 12. Now you see how our second way of viewing mods is useful. To mod out 7631 in mod 7,
we can either find 7631 in base 7 and look at the last digit, or we can divide by 7 and look at the
remainder.

In this discussion of remainders, we have used mods to denote the amount more than a multiple
of 5 a given number is. For example, 2, 7, 12, 17, etc. are all exactly 2 more than a multiple of 5.
In the same way we can define negative mods as the amount less than a multiple of 5 a number is.
Since 2,7, 12, 17, etc. are all 3 less than the nearest multiple of 5, they are all congruent to —3 mod 5.
Extending this reasoning, we can write in mod 5:

g =18 = —8 =8 == 7 = 12

Note that each term is five away from the one before it and after it. Think about why this is true.

EXAMPLE 5-5 Why does the remainder method described above work?

Solution: Consider 7631 in base 7. It is 311517, or
3.7 41-72+1-72+5-7+1.

When we divide this expression by seven, the seven evenly divides the first 4 terms of the sum and
leaves the last term as the remainder, i.e. 7631/7 = 3-72 +1-7% + 1-7 + 5, with a remainder of 1.
Hence we see that the last digit of 7631 written in base 7 is the same as the remainder we have upon
dividing 7631 by 7. This is why the remainder method works.

EXERCISE 5-11 Write down some numbers which are congruent to 3 mod 5.

EXERCISE 5-12 What is the largest integer less than 100 which is congruent to 3 mod 5?

EXAMPLE 5-6 How many positive integers less than 100 are congruent to 3 mod 57?

Solution: The smallest is obviously 3. In the previous exercise, you should have found that
the largest is 98. How many are there in between? We have 3 = 0(5) + 3 and 98 = 19(5) + 3, and the
other numbers congruent to 3 mod 5 will be 1(5) + 3, 2(5) + 3, and so on. The number by which 5 is
multiplied canbe 0, 1, 2, ..., 19, so there are 20 possibilities.

EXERCISE 5-13 How many integers are there between 50 and 250 inclusive which are congruent to
1mod 7?

EXERCISE 5-14 Which numbers are congruent to 0 mod 57?

Once the principle of congruence is understood, we can move on to doing actual arithmetic with
it. One thing which we can do with a congruence like

12=7 (mod 5)
is add the same thing to both sides:

12+3=7+3 (mod5).
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We can do this because if the last digits in base 5 are the same before the addition, they will be the
same after the addition. Clearly the same will be true for subtraction.

How about for multiplication? Again, the same should hold. If the last digits are the same before
the multiplication, they will be the same after.

Not only can we multiply or add the same quantities to both sides, but if x and y have the same
last digit in base 5, then we can add x to one side and y to the other in mod 5. For example, since 8
and 13 have the same last digit in base 5,

12+13=7+8 (mod 5).

Applying this concept to multiplication, since 12 and 7 are congruent mod 5, we can multiply one
side by 12 and the other by 7, yielding

ir =7 (mod 5).

~ In this manner, we can raise the two sides to any positive integral power!

WARNING: Division is a much more complicated matter. For instance, clearly 5 = 10 (mod 5),
but if we divide both sides by 5, we have 1 = 2 (mod 5), an obviously false relation. There is
something wrong here, and that something will be investigated in the next volume. Just remember
that division doesn’t generally work in modular arithmetic.

In finding the last digit of a sum or product of two numbers, we don’t need to do the entire sum
or product, just the sum or product of the last digits of the two numbers. In mods, this is reflected by
the fact that we can “mod out” before or after doing operations; the order doesn’t matter. By this we
mean that we can mod out the factors of a product and then multiply the results rather than having
to mod out the product of the numbers. For example, since 9899 = 4 (mod 5) and 7677 = 2 (mod 5),
we can say 9899 - 7677 = 4.2 = 8 = 3 (mod 5) rather than first multiplying 9899 and 7677 and
modding out the product. Make sure you follow this; it is a very important technique. Try to use it
to show that 9453 - 6824 = 6782 - 5675341 = 2 (mod 5).

Let’s summarize what we can do with congruences. If 2 = b (mod m) and p = g (mod m), then for all
positive integers ¢, we have:

1. a+c=b+ c(modm)
. a—c=b-c(modm)
. ac = bc (mod m)

2
3

4. a° = b (mod m)
5. (@a+p)=(b+g)(modm)
6

. ap = bg (mod m)

You may need to chew on those last two a bit, though they are among the most useful. They just
restate the fact that we can mod out before or after we add or multiply.
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EXAMPLE 5-7 1If we are given that 2 = 0 (mod b), then the remainder when a is divided by b is 0.
Thus we can conclude that a is a multiple of b.

EXERCISE 5-15 Find the smallest positive integer which 123 is congruent to mod 4. Find the
smallest positive integer that 321 is congruent to mod 7.

EXERCISE 5-16 Show that the square of any integer is congruent to either 0, 1, or 4 mod 8. @%\

5.5 Divisibility Tricks

Even at this early stage in understanding divisibility, we can find some tricks to tell if one number
divides another. We start with the obvious example: a number is divisible by 10 if and only if its last
digit is 0. This seems trivial, but then so will the rest of the rules in this section when you've used
them a few times. -

We start with the basic concept that a number, ¥, is divisible by another number, y if and only if
x = 0 (mod ). This just means that when we divide x by y, the remainder is zero.

First we examine divisibility by 2. A number is divisible by 2 if and only if it is congruent
to 0 mod 2. We can write the number, say 7965841, as the sum of its last digit and the rest,
as in 7965841 = 1 + 7965840. Thus we can write 7965841 = 1 + 7965840 (mod 2). The second
part ends with a zero, so is divisible by 10, or 7965840 = 10(something). But 2|10, so this means
7965840 = 2(something else), so that 2 divides 7965840, and 7965840 = 0 (mod 2). Substituting this
in above, we find that 7965841 = 1 (mod 2), or a number is congruent to its last digit mod 2. So to
test for divisibility by 2, we just test the last digit, which must be 2, 4, 6, 8, or 0 if the number is to be
divisible by 2. We went through this very long method of showing that 27965840 to give a hint as
to how we test for divisibility of other numbers.

For example, consider 4. A multiple of 10 is not necessarily a multiple of 4, but a multiple of 100
is. We therefore note that

45376 = (45300 + 76) (mod 4) = (453 - 100) + 76) (mod 4).

Since 100 = 0 (mod 4), we have 453 - 100 = 453 - 0 (mod 4), which means 453 - 100 = 0 (mod 4), and
now we have

45376 = ((453 - 100) + 76) (mod 4) = ((453 - 0) + 4 - 19) (mod 4) = (0 + 0 - 19) (mod 4) = 0 (mod 4).

Notice how useful the fact that 100 = 0 (mod 4) is to showing that 45376 is a multiple of 4.

EXERCISE 5-17 Find a shortcut along the same lines to test for divisibility by 5.

EXERCISE 5-18 How about for 4, 8, and 207

EXERCISE 5-19 Why is it so easy to test for divisibility by these numbers?
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We can find a (slightly more complicated) rule to test for divisibility by 3. Let’s use 7965. We
divide it not into two parts as above, but many more, writing it as 7000 + 900 + 60 + 5. Since
10 = 1 (mod 3), taking the sum mod 3 causes each factor of 10 to reduce to a 1. (For example,
100 =10-10 (mod 3) = 1 - 1 (mod 3) = 1 (mod 3).) Hence we have

7965 7000 +900 + 60 +5 (mod 3)
7-10-10-10+9-10-10+6-10+5 (mod 3)
7-1-1-1+9-1-14+46:1+5 (mod 3)
7+9+6+5 (mod 3).

Thus a number is congruent to the sum of its digits in mod 3! In general, then, a number is divisible
by 3 if and only if the sum of its digits is.

n

1l

EXERCISE 5-20 For the numbers 1717, 3451, and 173451, test for divisibility by 3 by the shortcut
and by direct division.

EXERCISE 5-21 Find the divisibility shortcut for 9; recreate the discussion of divisibility by 3, except
using 10 = 1 (mod 9).
EXERCISE 5-22 Which of the following is divisible by 3 but not by 9: 4995, 4996, 4997, 4998, 49997

We have been able to get good divisibility rules for 10 and its divisors, and for 3 and 9. How
about 10 + 1 = 11? We can write 10 = —1 (mod 11) (does this make sense?) to simplify. Each
power of 10 will thus be congruent to a power of —1 when we write the number in mod 11, e.g.
1000 = (10)? = (—1)°® = —1 (mod 11). Hence

7964 7-10°+9-10° +6-10+4 (mod 11)
7 (1P +9.-(-1)?+6-(-1)+4 (mod 11)
-7+9-6+4 (mod11)

Hence, a number is divisible by 11 if and only if the sum of its digits with alternating signs is.

What if the alternating sum is negative? If it is —11, =22, etc., the number is divisible, otherwise
not. This is because —11, —22, etc. are all evenly divisible by 11. If the alternating sum is 0, then
the number is divisible by 11, as 0 is divisible by all numbers. You might be uncomfortable with
using negatives for divisibility, but they are fine in both divisibility and modular arithmetic, as in
the example of 10 = -1 (mod 11) above.

I

il

EXERCISE 5-23 Which of the following are divisible by 11: 11,111, 1111, 1716, 1761, 1526377

EXERCISE 5-24 Prove, using our rule, that a two-digit number is divisible by 11 if and only if its
digits are the same.

EXAMPLE 5-8 How would you test a number for divisibility by 127

Solution: We might try to build a rule similar to that for 11, but there is a much easier way.
Since 12 factors into 4 X 3, a number is divisible by 12 if it is divisible by 4 and by 3; divisibility by
these numbers can be easily tested.

This shows that in general composite numbers can be analyzed in terms of the numbers which
divide them.
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5.6 Primes

Primes are the most important integers. There is a simple reason for this: every other number can
be broken down into a product of primes. For example, 15 can be written as 3 - 5, the product of
the primes 3 and 5, or 48 as 16 - 3 = 2 - 3, with the primes 2 and 3. By definition, primes cannot
be broken down any further, for they have no divisors to split into. The splitting up of numbers
into prime factors, or prime factorization, is extremely useful, because each number has only one
distinct prime factorization. (Here distinct means that, for example, 2*-3,3 2%, and 2-2-3-2 -2 are
considered the same.)

EXERCISE 5-25 Write down the prime factorizations of all integers from 2 to 12.
EXERCISE 5-26 What is the prime factorization of 2567

Finding the prime factorization of small numbers is very easy using only trial and error. To
factor larger numbers, however, we need to be a little more systematic. One important tool is the
divisibility tricks we have derived. We can easily factor out all 5's and 2's, for example. We can then
test for 3's and 11’s. For many numbers, we will already be well on our way with just these few
methods.

For others we have to resort to trial and error, going up through the primes and dividing by each
to see if it works. A tool to limit the amount of searching we have to do is to think about what the
largest primes involved can be. Call the number we intend to factor N. Clearly there cannot be more
than one factor greater than VN, since if there were more than one, their product would exceed N.
Similarly, if N is not prime, there must be at least one factor less than or equal to VYN. Why? Since
N is not prime, it must have at least two factors other than itself and 1. Either both are greater than
VN, which we have shown is impossible, or at least one is less than or equal to VN. Hence if we
cannot find a prime less than or equal to +N which divides N, then we know N is prime.

EXAMPLE 5-9 Let's see how all this works in practice by factoring 123420. We first get rid of all
10’s, and convert them to 2s and 5's: 123420 = 10- 12342 = 2 - 5- 12342, Note that upon finding the
prime factors 2 and 5 here, we divide 123420 by them and continue our job with the result, 12342.
(How would not doing so affect our search for the prime factorization? Try it and see.)

Since the number left is divisible by 2, but not by any more 2’s after that, we can take out one
more 2: 2-5-12342 = 22.5- 6171, We then test the number which remains for 3’s and 11’s. The sum
of the digits of 6171is 6 + 1 + 7 + 1 = 15, which is divisible by 3 but not 9, so we can take out exactly
one 3 to get 2% -3 -5 - 2057. The alternating sum of the digits of 2057 is 2 -0+ 5 —7 = 0, which is
divisible by 11, so 2057 is divisible by 11, and we have 2% -3.5-11 - 187. Testing 187, we again find
divisibility by 11, leaving 22 - 3 - 5112 - 17. Since 17 is prime, this is a complete factorization.

EXAMPLE 5-10 Find the prime factorization of 97.

Solution: Clearly 2 and 5 do not divide 97; 3 does not divide it because the sum of the dig-
its, 16, is not divisible by 3; 7 does not divide it if we do the long division. But these are all the primes

less than or equal to V97 ~ 10,8097 is a prime.
EXERCISE 5-27 Factor 141, 1441, and 14441.
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At some point in the study of primes, the question arises: How many primes are there? (Do you
have a guess?) It was shown by a Greek that there have to be infinitely many primes. The proof is
an easy application of contradiction.

Proof: Assume for the sake of contradiction that there are only finitely many primes and call
thempy, pa, . .., Pn. Now consider the number P = p1p> - - - p, + 1. Clearly this number is not divisible
by any of the p;, since dividing by any p; will leave a remainder of 1. But since P is not equal to
1, it must have some prime factor. Since none of the p; is a factor of P, there must be some other
prime that divides P. This is a contradiction to our assumption that the p; are all the primes, so the
original assumption of finitely many primes must be false. If you don’t understand contradiction,
read about it on page 254 and return.

5.7 Common and Uncommon Factors

Given two numbers m and 5, it is often important to think about what factors they have in common.
For example consider the numbers 84 and 112, which can be factored into 22.3.7 and 2*.7, respectively.
What prime factors are in common? Exactly two 2’s and one 7.

Given the prime factors that are in common, we can write down the composite common factors
as well by combining the primes. In our example, the composite common factors are 22 =4.2.7=14,
and 2*-7 = 28.

The largest factor shared by two numbers is called their greatest common factor, or GCE. The
greatest common factor is found by multiplying together all the common prime factors, so that for
84 and 112 we have 28 as the GCF. Once we can do the prime factorizations of two numbers, finding
the GCF is easy: just combine all the common prime factors. The GCF of two numbers is usually
expressed by writing the numbers in parentheses separated by a comma; for example, (84,112) = 28.
(Yes, this does look uncomfortably like an ordered pair.)

What about two numbers which, like 28 and 15, have no common prime factors? In this case, the
greatest common factor is 1. Such numbers are called relatively prime.

EXAMPLE 5-11 Find the GCF of 100 and 1000.

Solution: The numbers factor as 22 - 5% and 2° - 5°, so they share two 2’s and two 5’s. The
product of these common factors is 2% - 5> = 100.

EXERCISE 5-28 Find (117,165), (102, 119), and (96, 36).
EXERCISE 5-29 Prove that (4, b) must be less than or equal to a, b, and a — b, wherea > b.

Having analyzed the common factors of two integers, we can next think about the factors which
are not in common. The least common multiple (LCM) of two integers is the smallest number
which both integers divide evenly.

To see how the LCM works, let’s return to our original pair, 84 = 2%-3-7and 112 =2*-7. If an
integer is divisible by 84, it must be divisible by two 2’s, a 3, and a 7; if it is divisible by 112, it must
be divisible by four 2s and one 7. Since we want it to be divisible by both, the LCM must contain
four 2’s, one 3, and one 7. Moreover, the LCM should not be divisible by anything else, or it would
be larger than 2% - 3 - 7 = 336, which is already divisible by both 84 and 112.
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To find the LCM, then, we have to factor each number and for each prime, take the largest power
which appears in either of the factorizations. The resulting list of powers of primes is multiplied
together to get the LCM.

The LCM of two numbers is often written by placing the pair in square brackets, as in [84,112] =
336. Note also that if you add two fractions, the denominator of the new fraction will be the LCM of
the denominators of the summed fractions—the process of finding the “least common denominator”
is just finding the LCM in disguise.

EXAMPLE 5-12 Find the LCM of 100 and 1000.
Solution: The numbers factor into 2% - 52 and 23 - 5°, so the LCM must have three 2's and
three 5’s. The product of these factors is 2% - 5° = 1000.
EXERCISE 5-30 Find [117,165], [102,119], and [96, 36].
EXERCISE 5-31 Show that each pair of integers in the preceding example satisfies

o

(m, n)[m, n] = mn.

EXERCISE 5-32 Prove the formula of the previous exercise. This formula can be used to solve
problems like, “If the GCF of two numbers is 8 and the product of the numbers is 2880, what is the
LCM of the numbers?” Using the above method, we don’t even have to find the two numbers!

GCEF’s and LCM’s of more than two numbers are also possible. Here the GCF is the largest factor
which divides all the numbers, and the LCM is the smallest number divisible by all the numbers.

EXAMPLE 5-13 Find [12,54,42].

Solution: The factorizations of our three numbers are 22 - 3, 2- 3%, and 2 - 3 -7. The largest
powers encountered are 22, 3%, and 7; multiplying these yields 22 - 3° - 7 = 756.

EXERCISE 5-33 Prove that (I, m, n)[lm, mn, nl] = Imn for positive integers [, m, and n.

Problems to Solve for Chapter 5

You are not expected to be able to do all of these now. Do the ones you can, and return to the others
after you have completed more of the book.

87. Find the GCF of 36, 27, and 45.

88. How many multiples of 7 are there between 100 and 2007

89. Find the units digit of 19%°.

90. Find the 1275th term of the sequence 1, 3, 5,...,15,1,3,5,...,15,1, ... (Mandelbrot #3)

91. Find the smallest positive integer which when divided by 10 leaves a remainder of 9, when
divided by 9 leaves a remainder of 8, by 8 leaves a remainder of 7, etc., down to where, when
divided by 2, it leaves a remainder of 1. (AHSME 1951)
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92. Find the value of digit A if the five-digit number 12A3B is divisible by both 4 and 9, and A # B.
(MATHCOUNTS 1986)

93. Find the units digit of 3198 — 21986 (MATHCOUNTS 1986)

94. Inhow many ways can a debt of $69 be paid exactly using only $5 bills and $2 bills? (MATHCOUNTS
1988)

95. Find the sum of all four digit natural numbers of the form 4AB8 which are divisible by 2, 3, 4, 6,
8, and 9. (MATHCOUNTS 1938)

96. If a set of markers is placed in rows of 4 each, there are 2 markers left over; if in rows of 5 each,
there are 3 left over; and if in rows of 7 there are 5 left over. What is the smallest number of markers
that the set could contain? (MATHCOUNTS 1984)

97. When n is divided by 5, the remainder is 1. What is the remainder when 3# is divided by 5?
(MATHCOUNTS 1991)

98. A six place number is formed by repeating a three place number; for example 256,256 or 678,678,
etc. What is the largest integer that divides all such integers? (AHSME 1951)

99. A base-two numeral consists of 15 digits, all of which are ones. When tripled and written in base
two, how many digits does this number contain? (MATHCOUNTS 1986)

100. What is the largest base 10 number that can be expressed as a 3-digit base 5 number? (MATH-
COUNTS 1989)

101. How many natural numbers require 3 digits when written in base 12, but require 4 digits when
written in base 97 (MATHCOUNTS 1989)

102. Given 9% = 531,441, how would you represent 531,440 in base 97 (MATHCOUNTS 1990)

103. Find the smallest positive integer greater than one which yields a remainder of one when
divided by any single digit positive integer greater than 1. (Mandelbrot #3)

104. A store sold 72 decks of cards for $267.9b. Find a + b. (MA® 1991)

105. Foreachofn = 84and n = 88, find the smallest integer multiple of n whose base 10 representation
consists entirely of 6's and 7’s. (USAMTS 1)

106. When the number 7 is written in base b its representation is the two-digit number AB where
A =b-2and B = 2. What is the representation of n in base (b — 1)? (MA® 1991)

107. If a # 1 and /10000, = 10,, find a. (MAS 1990)

108. Denote by p; the kth prime number. Show that pip; - - - p, + 1 cannot be the perfect square of an
integer. (M&IQ 1992)

109. Prove that it is impossible for three consecutive squares to sum to another perfect square.
(Mandelbrot #2)
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——the BIG PICTURE

One of the most interesting aspects of the world of mathematics is the existence of conjec-
tures, assertions which many think may be true but which no one is able to prove—or disprove.
Many famous conjectures are or were in the realm of number theory.

An early instance was the conjecture of Fermat in the mid-1600’s that all integers of the form
22" +1, called Fermat numbers, are prime. It looks true for the first few n: 11 = 1 yields 5; n = 2
yields 17; n = 3, 257. (Can you verify that 257 is prime?) The fourth Fermat number, 216 4 1 is
also prime; with no computers to do the complicated calculations, this was as high as anyone
could go. However, in the mid-1700’s Leonhard Euler was able to find an explicit factor of
232 + 1, the fifth Fermat number, and the conjecture was proved false. ,

Other conjectures were more fortunate; many live on to this day. Christian Goldbach
conjectured in the early 1700’s that every even integer greater than 2 could be written as the
sum of two primes. (For example, 6 =3+ 3,8 =5+3,36 = 19+ 17, and 200 = 97 + 103.)
Goldbach’s conjecture, as it has come to be called, is to this day an open question. The most
powerful computers have been unable to find a counterexample, and the best mathematicians
have been unable to prove it. Steps have been made toward a proof, and some feel it is in sight,
but that is as far as it goes.

The most famous conjecture of all time was also in the field of number theory. Fermat's
Last Theorem haunted mathematicians (and amateur solvers, who have flooded publications
with bogus “proofs”) for centuries. In 1993, Andrew Wiles, a professor at Princeton University,
finally finished the theorem off, but he required seven years’ unremitting labor, as well as a
very large body of supporting work by others, to do it. Old conjectures die hard.




